INFLUENCE OF ARTIFICIAL CALCIUM HYDROSILICATES ON THE HARDENING PROCESSES AND PROPERTIES OF NON-AUTOCLAVE SILICATE MATERIALS BASED ON UNCONVENTIONAL ALUMINOSILICATE RAW MATERIALS

https://doi.org/10.34031/2618-7183-2020-3-2-19-28
Оne of the possible ways to improve the properties of building materials is to modify the processes of structure formation, which can be realized through the use of crystalline primers. In this regard, it is urgent to study the effect of artificial calcium hydrosilicates on hardening processes, as well as the properties of non-autoclave silicate materials based on non-traditional aluminosilicate raw materials. Studies have shown that the addition of artificial calcium hydrosilicates (CSH) in an amount of 1-1.5 wt. %, when the content in the mixture of CaO is less than 10 wt. %, effectively increases the strength parameters of products at all stages of heat and moisture treatment from 8 to 16%. The most intense increase in strength is observed during the heat-moisture treatment (TBO) from 3 to 6 hours and is at least 13%, while in samples without the addition of artificial calcium hydrosilicates, the strength increase is 6%. The addition of artificial calcium hydrosilicates intensifies the processes of structure formation, which ensures an increase in crystalline matter, and, due to the fibrous structure, acts as a fiber, which contributes to the nano-reinforcement of the cementing substance formed from neoplasms in the CaO-SiO2(Al2O3)-H2O system based on clay rocks and calcium oxide. Due to the accelerated set of strength, it is possible to reduce the duration of isothermal exposure while maintaining the necessary performance characteristics.
1. Lesovik V.S., Fomina E.V. Novaja paradigma proektirovanija stroitel'nyh kompozitov dlja zashhity sredy obitanija cheloveka. Vestnik MGSU. 2019. 14 (10). P. 1241 – 1257. (rus.)
2. Volodchenko A.N., Strokova V.V. Razrabotka nauchnyh osnov proizvodstva silikatnyh avtoklavnyh materialov s ispol'zovaniem glinistogo syr'ja. Stroitel'nye materialy. 2018. 9. P. 25 – 31. (rus.)
3. Fomina E.V., Lesovik V.S., Kozhukhova N.I., Chulenyov A.S. Role of solutions when metasomatic transformations in construction composites. Materials Science Forum. 2019. 974. P. 168 – 174. (rus.)
4. Lesovik V.S. Leshchev S.I., Ageeva M.S., Alfimova N.I. Zeolite-containing terra-silicea as a component of composite binders. Materials Science Forum. 2019. 974. P. 136 – 141. (rus.)
5. Volodchenko A.A. Vlijanie uslovij jekspluatacii na svojstva neavtoklavnyh silikatnyh materialov na osnove netradicionnogo syr'ja. Vestnik BGTU im. V.G. Shuhova. 2018. 12. P. 12 – 20. (rus.)
6. Beaudoin J.J., Drame H., Raki L., Alizadeh R. Formation and properties of C–S–H – HDTMA nano-hybrids. J Mater Res. 2008. 23 (10). P. 2804 – 2815.
7. Beaudoin J.J., Drame H., Raki L., Alizadeh R. Formation and properties of C–S–H– PEG nano-structures. Materials and Structures. 2009. 42 (7). P. 1003 – 1014.
8. Sanchez F., Zhang L. Molecular dynamics modeling of the interface between surface functionalized graphitic structures and calcium–silicate–hydrate: interaction energies, structure, and dynamics. Journal of Colloid and Interface Science. 2008. 323 (2). P. 349 – 358.
9. Sanchez F., Zhang L. Interaction energies, structure, and dynamics at functionalized graphitic struc-ture-liquid phase interfaces in an aqueous calcium sulfate solution by molecular dynamics simulation. Carbon. 2010. 48 (4). P. 1210 – 1223.
10. Chang T.-P., Shih J.-Y., Yang K.-M., Hsiao T.-C. Material properties of Portland cement paste with nano-montmorillonite. Journal of Materials Science. 2007. 42 (17). P. 7478 – 7487.
11. Lindgreen H., M. Geiker, H. Krøyer, N. Springer, J. Skibsted. Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates. Cement and Concrete Composites. 2008. 30 (8). P. 686 – 699.
12. Kroyer H., Lindgreen H., Jacobsen H.J., Skibsted J. Hydration of Portland cement in the presence of clay minerals studied by 29Si and 27Al MAS NMR spectroscopy. Advances in Cement Research. 2003. 15. P. 103 – 112.
13. Andreas Picker, Luc Nicoleau, Zaklina Burghard, Joachim Bill, Igor Zlotnikov, Christophe Labbez, André Nonat, Helmut Cölfen. Mesocrystalline calcium silicate hydrate: A bioinspired route toward elastic concrete materials. Science Advances. 2017. 3 (11). e1701216.
14. Ljudvig H.-M., Dressel' D. Sinteticheskie gidraty silikata kal'cija v sbornyh zhelezobeton-nyh konstrukcijah. SRI Mezhdunarodnoe betonnoe proizvodstvo. 2011. 5. P. 42 – 46. (rus.)
15. Ovcharenko G.I., Ibe E.E., Sadrasheva A.O., Viktorov A.V. Kontaktnaja prochnost' cementnoj fazy S-S-H s dobavkami. Izvestija vysshih uchebnyh zavedenij. Stroitel'stvo. 2018. (716). P. 48 – 57. (rus.)
16. Krivoborodov Ju.R., Elenova A.A. Primenenie mikrodispersnyh dobavok dlja uskorenija tverdenija cementa. Stroitel'nye materialy. 2016. 9. P. 65 – 67. (rus.)
17. Kalashnikov V.I., Erofeev V.T., Moroz M.N., Trojanov I.Ju., Volodin V.M., Suzdal'cev O.V. Nanogidrosilikatnye tehnologii v proizvodstve betonov. Stroitel'nye materialy. 2014. 5. P. 88 – 91. (rus.)
18. Volodchenko A.A., Zagorodnjuk L.H., Prasolova E.O., Chhin Sovan. Netradicionnoe glinistoe syr'e kak komponent neorganicheskih dispersnyh system. Vestnik MGSU. 2014. 9. P. 67 – 75. (rus.)
Volodchenko A.A. Influence of artificial calcium hydrosilicates on the hardening processes and properties of non-autoclave silicate materials based on unconventional aluminosilicate raw materials. Construction Materials and Products. 2020. 3 (2). P. 19 – 28. https://doi.org/10.34031/2618-7183-2020-3-2-19-28