INFLUENCE OF THE GENETIC FEATURES OF SOILS ON THE PROPERTIES OF SOIL-CONCRETES ON THEIR BASIS

https://doi.org/10.34031/2618-7183-2018-1-1-69-77
In order to form strong soil-concrete structures in parallel with the introduction of binder, an additive with a multicomponent composition that is activating the structure-forming process should be applied. Such addi-tive is usually called stabilizer of soil, its introduction allows achieving a positive effect for soils with a high proportion of finely dispersed fraction in its composition.
The article considers the main aspects of use in road construction of complex soil reinforcement by introducing a stabilizer and binding component. This technology will solve the problems of deficiency of high-quality traditional raw materials, lead to better physical and mechanical properties, increase labor productivity and reduce production costs.
As a result of the carried out studies, principles for improving the quality characteristics of reinforced soil were developed, taking into account the mineral composition of clay raw materials. As the main hypothesis of the study an increase in the hydrophobicity of stabilized soil by blocking the hydrophilic centers of clay rocks should be marked. This circumstance helps to reduce the consumption of cement in the reinforced soil without reducing the operational and physical-mechanical characteristics.
The dependence of the degree of effectiveness of the introduced stabilizing additive on the structural and chemical characteristics of clay rocks has been established, which decreases from montmorillonite and X-ray amorphous phases to kaolinite. Mixed layered formations, illite and chlorite act as intermediate minerals. Aluminosilicates act as the filler in this system that do not come into contact with the molecules of the stabilizer. To assess the degree of efficiency of interaction of the components of a soil-concrete mixture as an integral indicator it is necessary to use the cationic capacity of the soil.
1. Transportnaja strategija Rossijskoj Federacii na period do 2030 goda. Utverzh. rasporjazheniem Pravitel'stva RF ot 22 nojabrja 2008 g. №1734-r v red. rasporjazhenija Pravitel'stva RF ot 11 ijunja 2014 g. N1032-r. 70 p. (rus)
2. Bezruk V.M. Ukreplenie gruntov v dorozhnom i ajerodromnom stroitel'stve. M.: Transport, 1971. 247 p. (rus)
3. Gumenskij B.M. Osnovy fizikohimii glinistyh gruntov i ih ispol'zovanie v stroitel'stve. M.: Strojizdat, 1965. 206 p. (rus)
4. Voronkevich S.D. Osnovy tehnicheskoj melioracii gruntov. M.: Nauchnyj mir, 2005. 504 p. (rus)
5. Goncharova L.V., Baranova V.I. Issledovanie processov strukturoobrazovanija v cementogruntah na raznyh stadijah uprochnenija v celjah ocenki ih dolgovechnosti. Materialy VII Vsesojuznogo soveshhanija po zakrepleniju i uplotneniju gruntov. Leningrad: Jenergija, 1971. P. 16 – 21. (rus)
6. Strokova V.V., Shheglov A.F. Gruntobetony na osnove glinistyh porod KMA dlja dorozhnogo stroitel'stva: monografija. Belgorod: Izd-vo BGTU im. V.G. Shuhova, 2003. 152 p. (rus)
7. Ljutenko A.O. Analiz mikrostruktury aljumosilikatnogo syr'ja s pozicii primenenija ego v dorozhnom stroitel'stve. Vestnik Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V.G. Shuhova. 2011. 2. P. 33 – 38. (rus)
8. Strokova V.V. Analiz organo-mineral'nyh kompozitov s uchetom genezisa i razmernyh urovnej mineral'nogo syr'ja. Vestnik Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V.G. Shuhova. 2009. 4. P. 28 – 32. (rus)
9. Solanki P. Zaman M. Microstructural and mineralogical characterization of clay stabilized using cal-cium-based stabilizers. Scanning electron microscopy. 2012. 38. P. 771 – 798.
10. Strokova V.V., Karacupa S.V., Shheglov A.F. Osobennosti strukturoobrazovanija v sisteme «glinistye porody-izvest'soderzhashhie othody-cement». Stroitel'nye materialy. 2004. 3. P. 16 – 17. (rus)
11. Nikolaenko M.A. Gruntobetony na osnove othodov ugledobychi korkinskogo mestorozhdenija: dis. … kand. tehn. nauk: 05.23.05: zashhishhena 06.07.10. Belgorod: Izd-vo BGTU, 2010. 217 p. (rus)
12. Newman K., Tingle J.S. Emulsion polymers for soil stabilization. Proceedings of the FAA worldwide airport technology transfer conference, Atlantic City, USA, 2004.
13. Bell F.G. Lime stabilization of clay minerals and soils. Engineering Geology. 1996. 42. P. 223 – 237.
14. Chen H., Wang Q. The behavior of organic matter in the process of soft soil stabilization using cement. Bulletin of Engineering Geology and the Environment. 2006. 65 (4). P. 445 – 448.
15. Bone B.D. Review of scientific literature on the use of stabilisation/solidification for the treatment of contaminated soil, solid waste and sludges. UK: Environment Agency. 2004. 343 p.
16. Kul'chickij L.I., Us'jarov O.G. Fiziko-himicheskie osnovy formirovanija svojstv glinistyh porod. M.: Nedra, 1981. 178 p. (rus)
17. Ovcharenko F.D. Gidrofil'nost' glin i glinistyh mineralov. Kiev: Izd-vo AN USSR, 1961. 291 p. (rus)
18. Kochetkova R.G. Osobennosti uluchshenija svojstv glinistyh gruntov stabilizatorami. Nauka i tehnika v dorozhnoj otrasli. 2006. 3. (rus)
19. Fedulov A.A. Primenenie poverhnostno-aktivnyh veshhestv (stabilizatorov) dlja uluchshenija svojstv svjaznyh gruntov v uslovijah dorozhnogo stroitel'stva: avtoref. dis. kand. tehn. nauk. M., 2005. (rus)
20. Company Standard STO 13548260-002-2011. Materialy kamennye i grunty, obrabotannye cementom s dobavkoj fermentnogo preparata «Dorzin». Tehnicheskie uslovija. (rus)
21. Bergaya F., Lagaly G. Intercalation processes of layered minerals. EMU Notes in Mineralogy. 11. 2011. P. 261 – 286.
Dmitrieva T.V., Strokova V.V., Bezrodnykh A.A. Influence of the genetic features of soils on the properties of soil-concretes on their basis. Construction Materials and Products. 2018. 1 (1). P. 69 – 77. https://doi.org/10.34031/2618-7183-2018-1-1-69-77