THE USE OF SEMI-AQUATIC CALCIUM SULFATE TO INTENSIFY THE PROCESSES OF HARDENING OF STRUCTURAL HEAT-INSULATING FOAMED CONCRETE

https://doi.org/10.34031/2618-7183-2018-1-3-25-32
Construction of energy- and resource-saving housing of increased comfort involves the creation of more efficient building materials in comparison with traditional and new designs of fencing buildings with im-proved thermal properties. The problem of energy saving in construction has determined the direction of creation and production of effective cheap materials with high thermal properties. One of the most promising materials of this type is environmentally friendly, non-combustible cellular foam concrete.
The problem of accelerating the setting and hardening of foam concrete mixtures, as it allows to accelerate the turnover of forms and reduce the time from manufacturing to sending the finished product to the consumer is of great practical interest.
However, in most cases, domestic foaming agents are produced and used without additional input of setting and hardening regulators. This is due to the fact that the compatibility of the latter with the main additive – foaming agents is not sufficiently investigated. This problem is quite complex, as some setting accelerators can cause defoaming, worsen the structure of the foam matrix, reduce the mechanical strength of the stone and have other negative effects. At the same time, properly selected setting accelerators enhance the action of foaming agents
In the work the questions of application of semi-aqueous calcium sulphate (SCS) for intensification of hardening of foam concrete are considered. The change in physical and mechanical characteristics of foam concrete prepared on anionic and cationic blowing agents with an additional content of 1, 2 and 3% semi-aqueous calcium sulphate is shown. It is established that the SCC allows accelerating the hardening processes, and the formation of ettringite does not cause strong internal stresses, which is related to the porous structure of the material.
1. Rahimbaev SH.M. Regulirovanie tekhnicheskih svojstv tamponazhnyh rastvorov. Tashkent: FAN, 1976. 160 p. (rus.)
2. P'yachev V.A., Stiharev R.A., Dolgonosova S.P., Nikitin S.V., Kiseleva V.N. Svojstva tamponazhnyh cementov,soderzhashchih sul'fat kal'ciya raznoj prirody. Cement i ego primenenie. 2006. 1. P. 88 – 91. (rus.)
3. Ponomarenko D.V., ZHuravlev S.R., Kulikov K.V., Fatihov V.A., Belousov G.A., Skorikov B.M., Ovchinnikov A.D. Tamponazhnaya smes'. Patent na izobretenie RUS 2304606 01.02.2006. (rus.)
4. Kozlova V.K., Vol'f A.V., Lihosherstov A.A., CHepurnova E.V. O mekhanizme vliyaniya karbonatnyh dobavok na sroki skhvatyvaniya cementnogo testa. Polzunovskij vestnik. 2010. 3. P. 112 – 115. (rus.)
5. Anikanova L., Kudyakov A., Nikitina O., Tolstov D. Influence of crystallized glyoxal on properties of gypsum construction mixes. V sbornike: IOP Conference Series: Materials Science and Engineering Advanced Materials in Construction and Engineering. Ser. "International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering, TSUAB 2014". 2015. P. 012007.
6. Anikanova L., Volkova O., Guseva I., Kurmangalieva A. Research of gypsum-containing raw materials for obtaining of building mixes. Key Engineering Materials. 2016. 683. P. 295 – 300.
7. Demyanenko O.V., Kopanitsa N.O., Sarkisov Y.S., Abzaev Y.A., Ikonnikova K.V., Ikonnikova L.F. Quantitative phase analysis of modified hardened cement paste. IOP Conference Series: Earth and Environmental Science. 2017. 092008.
8. Sarkisov YU.S., Kozlova V.K., Bozhok E.V., Malova E.YU., Manoha A.M. Vliyanie karbonatnyh dobavok na usadochnye deformacii cementnogo kamnya. Tekhnika i tekhnologiya silikatov. 2018. 25 (1). P. 7 – 11. (rus.)
9. Krojchuk L.A. Ispol'zovanie othodov, soderzhashchih sul'fat kal'ciya. Stroitel'nye materialy. 2001. 6. P. 22 – 23. (rus.)
10. Van Nes Blessing L.K. Bystroskhvatyvayushchiesya i bystrotverdeyushchie smeshannye vyazhushchie na osnove portlandskogo, alyuminatnogo i sul'foalyuminatnogo cementov. Cement i ego primenenie. 2015. 2. P. 145 – 147. (rus.)
11. Krojchuk L.A. Ispol'zovanie othodov, soderzhashchih sul'fat kal'ciya. Stroitel'nye materialy. 2001. 6. P. 22 – 23. (rus.)
12. Kozlova V.K., Sokolov A.M., Manoha A.M. i dr. Vliyanie kolichestva gipsa i uslovij tverdeniya na prochnost' kompozicionnyh portlandcementov s karbonatosoderzhashchimi dobavkami. Cement i ego primenenie. 2014. 2. P. 104 – 107. (rus.)
13. Anikanova T.V. Teploizolyacionnye penobetony s uskorennym skhvatyvaniem: avtoref. dis. … kand. tekhn. nauk. Belgorod, 2007. 22 p. (rus.)
14. Anikanova T.V., Rahimbaev SH.M. Penobetony dlya intensivnyh tekhnologij stroitel'stva: monografiya. Belgorod: Izd-vo BGTU, 2015. 128 p. (rus.)
15. Russian State Standart GOST 31108 – 2003 Cementy obshchestroitel'nye. Tekhnicheskie usloviya. M.: FGUP CPP, 2003. 20 p. (rus.)
16. Russian State Standart GOST 10178 – 85 Portlandcement i shlakoportlandcement. Tekhnicheskie usloviya. M.: Izd-vo standartov, 1987. 6 p. (rus.)
17. Russian State Standart GOST 310.4 – 81 Cementy. Metody opredeleniya predela prochnosti pri izgibe i szhatii. M.: Izd-vo standartov, 1983. 11 p. (rus.)
18. Russian State Standart GOST 25485 – 89 Betony yacheistye. Tekhnicheskie usloviya. M.: Izd-vo standartov, 1989. 15 p. (rus.)
19. Russian State Standart GOST 10180 – 2012 Betony. Metody opredeleniya prochnosti po kontrol'nym obrazcam. M.: Standartinform, 2013. 35 p. (rus.)
20. Russian State Standart GOST 125 – 79 Vyazhushchie gipsovye. Tekhnicheskie usloviya. M.: Izd-vo standartov, 1980. 5 p. (rus.)
21. Russian State Standart GOST 23732 – 2011 Voda dlya betonov i stroitel'nyh rastvorov. Tekhnicheskie usloviya. M.: MNTKS, 2011. 21 p. (rus.)
Anikanova T.V., Pogoromsky A.S. The use of semi-aquatic calcium sulfate to intensify the processes of hardening of structural heat-insulating foamed concrete. Construction Materials and Products. 2018. 1 (3). P. 25 – 32. https://doi.org/10.34031/2618-7183-2018-1-3-25-32