THE USE OF COMPOSITE MATERIALS IN RECONSTRUCTION OF FLOORS OF INDUSTRIAL BUILDINGS

https://doi.org/10.34031/2618-7183-2019-2-3-58-64
The article discusses the relevance of the use of composite materials in the reconstruction of exposed to heavy loads of concrete and reinforced concrete floors of industrial buildings. It is noted that at the present stage of development of the construction industry special attention is paid to the use of steel fibreconcrete, as this material allows with minimal material and labor costs to carry out work on the reconstruction of industrial floors. The novelty of this study is the use as an adhesive between the existing floor, which is to be restored and strengthened, and the newly laid steel-fiber concrete layer of polymer-bitumen composite material with the addition of cement and graphite powder, previously obtained by the authors experimentally. This material with the required thickness is also a structural layer for leveling the surface of the lower layer, reducing friction under the sole of the upper steel-fiber concrete layer and the existing floor. The paper presents the technology of work in the reconstruction. The composition of the steel-fiber concrete layer is adopted on the basis of studies by other authors. Despite the fact that the experiments proved the solidity and strength of the reconstruction of the floor by the developed technology, the article notes that the final characteristics of the proposed floor design and technology can be identified only during operation, which can be the basis for further research on optimizing the thickness of the layers proposed for use of composite materials. For the evaluation of economic efficiency of application of these composite materials in the reconstruction of the concrete floors in the course of the experiment, there are revealed some figures for labor and material costs.
1. Pol'skoj P.P., Mailyan D.R. Kompozitnye materialy kak osnova effektivnosti stroitel'stva i rekonstrukcii zdanij i sooruzhenij. Inzhenernyj vestnik Dona. 2012. 4. (rus.)
2. Klyuev S.V. Osobennosti formirovaniya fibrobetonnyh kompozitov. Vestnik BGTU im. V.G. SHuhova. 2015. 5. P. 32 – 35. (rus.)
3. Abramyan S.G., Piunov E.M., Kurbanov I.Z., Kratkij obzor nauchnyh publikacij: sovremennyj vzglyad na problemu polucheniya i primeneniya fibrobetona. Inzhenernyj vestnik Dona. 2018. 2. (rus.)
4. Podnebesov P.G., Teryanik V.V. Peculiarities of Self-Consolidating Steel Fiber Concrete Use When Strengthening Reinforced Concrete Columns. Bulletin of the South Ural State University Series “Construction Engineering and Architecture”. 2014. 1. P. 23 – 26.
5. Miroshnichenko K.K., Vovk A.N. Ustrojstvo polov so sloem iznosa iz fibrobetona. Vіsnik Pridnіprovs'koї derzhavnoї akademії budіvnictva ta arhіtekturi. 2009. 6-7. P. 19 – 25. (rus.)
6. Usov B.A., Sidel'nikova E.V. Promyshlennye poly so sloem iznosa iz fibrobetona. Sistemnye tekhnologii. 2015. 17. P. 70 – 83. (rus.)
7. Gorb A.M., Al'himenko A.I. Osobennosti tekhnologii izgotovleniya fibrobetonnyh besshovnyh plit. Inzhenerno-stroitel'nyj zhurnal. 2008. 2. P. 27 – 31. (rus.)
8. Vojlokov I.A., Gorb A.M. O nekotoryh oshibkah pri proektirovanii i ustrojstve betonnyh polov v zdaniyah. Inzhenerno-stroitel'nyj zhurnal. 2009. 5. (rus.)
9 Gorb A.M., Vojlokov I.A Tekhniko-ekonomicheskoe obosnovanie primeneniya stalefibrobetona v konstrukciyah promyshlennyh polov. Minsk, 2009. P. 187 – 199. (rus.)
10. Information on www.spf.ccr.ru
11. Yang L., Lin X.S., Gravina R.J. Evaluation of dynamic increase factor models for steel fibre reinforced concrete. Construction and building materials. 2018. 190. P. 632 – 644.
12. Luccioni B., Isla F., Codina R., Ambrosini D. at al. Experimental and numerical analysis of blast response of High Strength Fiber Reinforced Concrete slabs. Engineering structures. 2018. 175. P. 113 – 122.
13. Kodur V., Solhmirzaei R., Agrawal A. at al. Analysis of flexural and shear resistance of ultra high performance fiber reinforced concretebeams without stirrups. Engineering structures. 2018. 174. P. 873 – 884.
14. Bru K., Touze S., Auger P., Dobrusky S. at al. Investigation of lab and pilot scale electric-pulse fragmentation systems for the recycling of ultra-high performance fibre-reinforced concrete. Minerals engineering. 2018. 128. P. 187 – 194.
15. Jhatial A.A., Sohu S., Bhatti N.U., Lakhiar M.T., Oad R. Effect of steel fibres on the compressive and flexural strength of concrete. International journal of advanced and applied sciences. 2018. 5 (10). P. 16 – 21.
16. Mohammadhosseini H., Tahir M.M. Production of sustainable fibre reinforced concrete incorporating waste chopped metallic film fibres and palm oil fuel ash. Sadhana-academy proceedings in engineering sciences. 2018. 43 (10). Article Number: UNSP 156.
17. Abbass W., Khan M.I., Mourad S. Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths ofconcrete. Construction and building materials. 2018. 168. P. 556 – 569.
18. Gholizadeh H., Dilmaghani S. The Study of Mechanical Properties of High Strength Concrete Containing Steel and Polypropylene Fibers. Civil engineering journal-Tehran. 2018. 4 (1). P. 221 – 230. DOI: 10.28991/cej-030981
19. Luccioni B., Isla F., Covina R., Ambrosini D. at al. Effect of steel fibers on static and blast response of high strength concrete. International journal of impact engineering. 2017. 107. P. 23 – 37.
20. Klyuev S.V. Vysokoprochnyj stalefibrobeton na tekhnogennyh peskah KMA. Stroitel'nye materialy, oborudovanie, tekhnologii HKHI veka. 2013. 11 (178). P. 38 – 39. (rus.)
21. OLeynik P.P. Construction waste during the reconstruction of buildings and structures. Russian journal of resources, conservation and recycling. 2016. 3 (2). Available at: http://resources.today/PDF/02RRO216.pdf
22. Ustrojstvo polov. Materialy i tekhnologii, [Elektronnyj resurs]. Rezhim dostupa: URL: http://polbetonstroy.ru/index.pl?act=PRODUCT&id=30 (rus.)
23. Vatin N.IVojlokov., I.A. Promyshlennye poly so sloem iznosa iz fibrobetona. StrojPROFIL' 8 (54) URL: http://www.izoteh-spb.ru/statyi/floors/5 (rus.)
24. Abramyan S.G., Oganesyan O.V., Polymer-bitumen binder based multifunctional material. Materials Science Forum. 2017. 265. P. 303 – 307.
25. Vojlokov I.A. Tekhnologiya ustrojstva polov promyshlennyh zdanij so sloem iznosa iz stalefibrobetona, avtoreferat dissertacii, SPb. 2012. 13. (rus.)
26. Russian Building Code SN 509-78 Guidelines for Determination of Return on Investment from the Use of New Technologies, Inventions, and Innovations in Construction. 1979.
Abramyan S.G., Burlachenko O.V., Oganesyan O.V. The use of composite materials in the reconstruction of floors of industrial buildings. Construction Materials and Products. 2019. 2 (3). P. 58 – 64. https://doi.org/10.34031/2618-7183-2019-2-3-58-64