STRESS-STRAIN STATE OF THE SYSTEM “COMBINED TOWER-REINFORCED CONCRETE FOUNDATION-FOUNDATION SOIL” OF HIGH-RISE STRUCTURES

https://doi.org/10.34031/2618-7183-2019-2-6-29-37
The aim of the work was to evaluate the effectiveness of the system "combined tower-reinforced concrete foundation-foundation soil" for high-rise structures on the example of a wind power plant (wind turbine) with a capacity of 1.5-2.0 MW using computer modeling in the PC "Ansys". Thus, under the combined tower the article refers to high-rise building, consisting of two parts: the lower composite, the upper – in the form of a thin-walled core-shell closed profile. In both cases, the shell is a pipe with a weak taper. As an analogue, the WPP considered in foreign literature is adopted: the radius of the rotor is R=41 m, the height to the axis of the wind wheel is zhub=80 m. The shell is made of high-strength C355 steel and, unlike the analog in this work, the cavity of the lower part of the tower to a height of 20 m was filled with B60 class concrete. The modeling took into account the spatial work of the elements of the structural system and the physical nonlinearity of the materials from which they are made. At the same time, the Mises strength theory was used for steel, the Williams – Varnake theory for concrete, and the Drukker – Prager theory for the foundation soil. Comparison of the calculation results with the analog showed that the destructive load of the tower increased by 37% due to filling the lower part of it with concrete, which indicates the effectiveness of the proposed solution. In this case, the destruction of the tower with a concrete core and without it occurred from the loss of local stability of the steel shell at the level of the junction of the tower with the foundation (with a compressed zone).
1. Company Standard STO 70238424.27.100.059-2009 Vetroelektrostancii (VES). Usloviya sozdaniya. Normy i trebovaniya. M.: Nekommercheskoe Partnerstvo «Innovacii v elektroenergetike», 2009. 192 p. (rus.)
2. Company Standard STO RusGidro 03.01.102-2013 Vetroelektrostancii. Osnovnye trebovaniya, kriterii vybora vetroenergeticheskogo oborudovaniya dlya vetroelektrostancij. M.: OAO «RUSGIDRO», 2013. 100 p. (rus.)
3. Elistratov V.V. Panfilov A.A. Proektirovanie i ekspluataciya ustanovok netradicionnoj i vozobnovlyaemoj energetiki. Vetroelektricheskie ustanovki: uchebnoe posobie. Spb, Izdatel'stvo Politekhnicheskogo universiteta, 2011. (rus.)
4. Strelkov Yu.M., Radajkin O.V., Sabitov L.S., Kuznecov I.L. Sravnitel'nyj analiz staticheskoj raboty razlichnyh tipov stal'nyh opor linij elektroperedach na osnove komp'yuternogo modelirovaniya sistemy «opora-fundament-grunt osnovaniya». Stroitel'naya mekhanika i raschyot sooruzhenij. Moskva: Nauchno-issledovatel'skij centr «Stroitel'stvo». 2019. 1. P. 71 – 79. (rus.)
5. Duvanova I.A., Sal'manov I.D. Trubobetonnye kolonny v stroitel'stve vysotnyh zdanij i sooruzhenij. Stroitel'stvo unikal'nyh zdanij i sooruzhenij. SPb: Sankt-Peterburgskij politekhnicheskij universitet Petra Velikogo sovmestno s Proizvodstvennym, nauchno-issledovatel'skim i proektno-konstruktorskim uchrezhdeniem «Venchur». 2014. 6 (21). P. 89 – 103. (rus.)
6. Kikin A.I., Sanzharovskij R.S, Trull' V.A. Konstrukcii iz stal'nyh trub, zapolnennyh betonom. M.: Strojizdat, 1974. 144 p. (rus.)
7. Umesh K.N., Bharath P. Mohamed Farzath Iyaz Design and analysis of 2-MW wind turbine tower. International Journal of Mechanical And Production Engineering. 2016. 4 (10). P. 13 – 17.
8. Chawin Chantharasenawong, Pattaramon Jongpradist and Sasaraj Laoharatchapruek Preliminary Design of 1.5 MW Modular Wind Turbine Tower. AEC17, 2nd TSME International Conference on Mechanical Engineering 19-21 October 2011.
9. Fateev E.M. Vetrodvigateli i vetroustanovki. M.: Sel'hozgiz, 1948. 554 p. (rus.)
10. Dejch M.E. Tekhnicheskaya gazodinamika. 2-e izd., pererabot. M.-L. Gosenergoizdat, 1961. 675 p. (rus.)
11. Scruton C., Rogers E.W.E. Steady and Unsteady Wind Loading of Buildings and Structures [and Discussion]. Philosophical Transactions of the Royal Society of London, 1971. P. 353 – 383.
12. Radajkin O.V. K postroeniyu diagramm deformirovaniya betona pri odnoosnom kratkovremennom rastyazhenii/szhatii s primeneniem deformacionnogo kriteriya povrezhdaemosti. Vestnik grazhdanskih inzhenerov. SPb: SPbGASU, 2017. 6. P. 71 – 78. (rus.)
13. Efimenko V.I. Prochnost' i deformacii izgibaemyh trubobetonnyh elementov: dis. … kand. tekhn. nauk: 05.23.01. Poltava, 1989. 185 p. (rus.)
Mailyan L.R., Yazyev S.B., Sabitov L.S., Konoplev Yu.G., Radaykin O.V. Stress-strain state of the system "Combined tower – reinforced concrete foundation-foundation soil" of high-rise structures. Construction Materials and Products. 2019. 2. (6). P. 29 – 37. https://doi.org/10.34031/2618-7183-2019-2-6-29-37