Shorstova E.S.

Postgraduate, Belgorod State Technological University named after V.G. Shukhov, Russia

Method for calculating the strength of massive structural elements in the general case of their stress-strain state (kinematic method)

https://doi.org/10.58224/2618-7183-2023-6-3-5-17
Abstract
A variant of the kinematic method of the theory of limit equilibrium is proposed; massive structural elements are considered, the material of which, in the general case, is anisotropic.
A rigid-plastic model of a deformable solid body is adopted. It is assumed that massive structural ele-ments are destroyed by dividing into parts that deform relatively little (“absolutely rigid finite ele-ments”, ARFE) and have 6 degrees of freedom in three-dimensional space. The process of destruction of the material goes along infinitely thin generalized destruction surfaces (GDS), on which the work of all acting internal force factors (IFF) is taken into account – 9 forces and 9 moments. Bodies made of homogeneous isotropic materials that resist tension and compression in different ways are considered. The strength surfaces in the IFF space are described by the corresponding parametric equations.
Using the equilibrium equation in the Lagrange form and the Mises maximum principle, as well as the proposed parametric equations of the limiting surface, the problem of determining the minimum value of the possible kinematic parameter of the load is reduced to a standard linear programming problem (LP), which is solved using the simplex method.
PDF

Experimental studies of the processes of structure formation of composite mixtures with technogenic mechanoactivated silica component

https://doi.org/10.58224/2618-7183-2023-6-2-5-18
Abstract
The paper considers the issues of utilization of technogenic fibrous material – waste of basalt production. The chemical composition of the technogenic fibrous material was studied, it was found that it consists of 44% SiO2. The initial basalt rock, which undergoes changes during high-temperature processing in the process of obtaining basalt fiber, was studied using IR spectroscopy. The grinding of the crowns was carried out for 30 minutes, allowing to reach a specific surface area of 800 m2 / kg. Further grinding does not lead to an increase in the specific surface area, which is associated with the phenomenon of secondary aggregation of fine particles. Research on REM has shown that the “cold shots” before grinding are mostly rounded or oval in shape. The compositions were formed and the strength characteristics of the samples for the 3rd and 28th day were determined. The maximum strength gain of 59 MPa was established at the age of 28 days in samples with the addition of 5% ground “cold shots” . When introducing cold shots in an amount of 10% (composition 5) of the cement mass, an intensive strength gain is noted in the early stages of hardening (7 days) with a strength of 38 MPa, slightly higher than the strength of the control composition. The introduction of 15% ground “cold shots” gives a strength value slightly lower (32 MPa) than the values of the control composition (37 MPa) at all stages of hardening.
PDF

Method for calculating the strength of massive structural elements in the general case of their stress-strain state (parametric equations of the strength surface)

https://doi.org/10.58224/2618-7183-2023-6-2-104-120
Abstract
In the mechanics of a deformable solid, there are rods (one overall dimension of which is significantly larger than the other two), plates and shells (one dimension of which is significantly smaller than the other two), arrays (all three dimensions of which are of the same order). The complexity of the corresponding calculation models grows in the same order: the calculation models for rods and rod systems are relatively simple, the most complex are the calculation models for massive structural elements.
In the work, parametric equations of the strength surface in the space of internal force factors (IFF) are obtained – 9 forces and 9 moments for homogeneous anisotropic bodies. As special cases, similar equations are given for isotropic bodies that resist tension and compression differently, for isotropic bodies that equally resist tension and compression. Algorithm A1 for constructing the desired sections of strength surfaces given by parametric equations is proposed. Algorithm A2 is proposed for deter-mining the safety factors for the bearing capacity, remaining in the space of the IFF. Some examples of calculations made using the proposed equations, algorithms and the corresponding computer programs compiled on their basis are given.
The proposed method for calculating massive bodies allows a more realistic assessment of the bearing capacity of massive structural elements.
PDF

FIBER CONCRETE FOR 3-D ADDITIVE TECHNOLOGIES

https://doi.org/10.34031/2618-7183-2019-2-4-14-20
Abstract
Fine-grained fiber concrete used in 3D printing is significantly different from conventional heavy concrete, which is determined by the increased consumption of cement, low water-cement ratio and the absence of large aggregates. The largest grain size of fine aggregate is selected taking into account the thickness of the section, the frequency and type of reinforcement, as well as the method of concrete placement. Despite the fact that the tensile strength of concrete on fine sand is more than 1.5 times higher than the strength of concrete on coarse sand, while there is a decrease in compressive strength. Due to the peculiarities of the technology of concrete manufacturing for layering, the use of coarse sands is impractical, and therefore it was decided to use quartz sand with a particle size module of 1.12 as a filler.
PDF