Ключевые слова: residential building

Analysis of thermal efficiency of external fencing made of innovative ceramic blocks

https://doi.org/10.58224/2618-7183-2024-7-3-1
Аннотация
The paper presents a comprehensive theoretical study of the external fencing structure made of innovative Porortherm 38 ceramic blocks in comparison with traditional structures made of solid ceramic brick, hollow ceramic brick and gas block. The study was conducted in the climatic conditions of Shymkent city, South Kazakhstan. The middle temperature values of the frostiest 5 days with a provision of 0,92 were adopted as the external temperature. The results of the study of the actual resistance (Rf) of the structures under study showed that all adopted structures meet the condition Rf˃Rreq, while the actual resistance of the new structure is 1.3 times more efficient than traditional ones. The analysis of temperature fields showed that the new structure is 2% more efficient than traditional ones. Moreover, no additional insulation costs are required. The obtained results were also confirmed by computer modeling in the ELCUT software package. The results of calculating the humidity regime showed that a condensation area appears in almost all the structures under consideration. The results of calculating the amount of moisture evaporated from the multicoat structure of the external fencing during the torrefaction period showed that all the accumulated moisture will evaporate during the specified period, the calculation of the condition of inadmissibility of moisture accumulation in the structures of external fencings for an annual period and for the period of moisture accumulation showed that all the considered structures meet the requirement . The results of calculating the air regime of multicoat structures of external fencings also showed that all structures including the new one meet the condition . The result of calculating the value of thermal inertia (D) in the proposed structure is up to three times more efficient than traditional structures, which applies to structures with high inertia (7˂D). The obtained results of the study indicate that the new proposal of a structure made of ceramics is cost-effective, innovative blocks can be proposed as a supplement to the register of materials of existing standards.
PDF

Field thermovision study of externsl enclosure for multi-storey residential building under climatic conditions of Northern Kazakhstan

https://doi.org/10.58224/2618-7183-2024-7-1-1
Аннотация
An in-place thermovision study was carried out in a multi-apartment apartment building of high comfort in a cold period of the year, located in the Northern part of the Republic of Kazakhstan in the work. The study result showed the presence of significant problems on thermal protection at the edge and inner corner fences where the temperature difference between the inner surface of an enclosure and the internal temperature was 6.4 - 19.4ºC. An analysis of thermograms of window joints in living rooms also showed a significant temperature drop from -9.3ºC to 18ºC, where total vulnerable area was up to 10%. Thermograms of window-sill joints of living rooms also showed a temperature drop to -21.1 ºC with an area of 15.7 %. The temperature on a reinforced concrete column’s inner surface showed a value of 6.5 ºC, which is typical for an area of 34.8 %. An analysis of outside and inside temperatures showed that as the temperature drops from -7 ºC to -23 ºC during the day, the inside temperature of the room remains relatively stable at 25.3 - 26.1 ºC, although there are problems with the thermal protection of the enclosures, which indicates overconsumption of heat energy. Moreover, the internal air temperature exceeds the permissible temperature for living rooms by 1.3 - 2.6 ºС. An analysis of air humidity also showed unsatisfactory values, which during the day varied from 17.4% to 21.2%. The deviations identified during the survey indicate the presence of problems on thermal pro-tection of external enclosures, which require additional surveys aimed at further development and op-timization of external enclosure designs to obtain optimal values in the issue of energy saving, consid-ering the climatic characteristics of the Kazakhstan regions.
PDF