Analysis of the effect of porosity on thermal conductivity with consideration of the internal structure of arbolite
Аннотация
A theoretical study of the effect of porosity and internal structure of the exterior envelope in the ANSYS and BLENDER software systems has been carried out in the paper. As an example of exterior enclosure structure, an arbolite block with porosity up to 20% and fiber structure in the direction along and across the heat flux, as well as randomly and at an angle of 45° was studied. As a result of the study, it was found that the significant effect of the heat flux dependence on the porosity of the material is the porosity of the block over 10%, which reached up to 5.92%, and with porosity up to 5% showed a difference of 1.3%. At the same time, the fiber structure also showed a significant difference from 8.16% to 15.33% depending on the fiber direction. At the same time, the analysis of the effect of porosity on the thermal conductive value also showed a difference of up to 15.33% for the same value of heat flux. At the same time, the influence of fiber structure shows an additional difference of up to 5.9%. The results of the study showed that the most thermally conductive arbolite blocks are, those in which the direction of fibers are located along (along the X axis) and at 45 ° relative to the structure of fibers across (along the Y axis) and random, the difference of which was up to 1.6%. The obtained results of this study, further excluding the costly experiments to determine the coefficient of thermal conductivity can be used to accurately estimate the coefficient of thermal conductivity of external envelopes made of arbolite blocks, considering porosity and fiber structure in the design of residential buildings.