Rational environmental management is one of the priorities of the technological development of the Russian Federation and most countries of the world. Particularly important in this area is the work undertaken with previously generated and accumulated waste, a whole group of which is gypsum-bearing wastes (GBW), which includes by-products of various industries: phosphogypsum, borogypsum, chlorogypsum, ferrogypsum, citrogypsum, vitamin gypsum, etc. GBW features are similar compositions, prevalence, perennial volumes of stored reserves with stable dynamics of annual growth. This determines the relevance of research on the development of a unified methodology for converting GBW of various types into target products particularly for construction purposes, providing maximum energy efficiency and minimal generation of secondary waste. The starting point of the research is the monitoring of approaches developed by the scientific community which are presented in the article. It is shown that researchers are exploring several main areas of GBW conversion: components of Portland cement and clinker; single and multicomponent binders; direct raw materials for the production of building materials; and road construction. The latter two directions have the greatest potential capacity for the consumption of GBW. The general level of research on the issue is not exhaustive, but has the potential to improve on existing methods of processing and application and promote the search for new and more efficient methods.
1. Plaster materials and products (production and use). Directory. Ferronskaya A.V., Publishing House ASV, Russian Federation, 2004. 488 p.
2. Mineral Commodity Summaries, 2021. Department of the Interior, U.S. Geological Survey. P. 122 – 123. https://pubs.usgs.gov/periodicals/mcs2021/mcs2021.pdf
3. Rashad A.M. Phosphogypsum as a construction material. Journal of Cleaner Production. 2017. 166. P. 732 – 743. doi:10.1016/j.jclepro.2017.08.049
4. Tayibi H., Choura M., Lo´pez F.A., Alguacil F.J., Lo´pez-Delgado A. Environmental impact and management of phosphogypsum. Journal of Environmental Management. 2009. 90 (8). P. 2377 – 2386. https://doi.org/10.1016/j.jenvman.2009.03.007
5. Huang Y., Qian J., Kang X., Yu J., Fan Y., Dang Y., Zhang W., Wang, S. Belite-calcium sulfoaluminate cement prepared with phosphogypsum: Influence of P2O5 and F on the clinker formation and cement performances. Construction and Building Materials. 2019. 203. P. 432 – 442. https://doi.org/10.1016/j.conbuildmat.2019.01.112
6. Kacimi L., Simon-Masseron A., Ghomari A., Derriche Z. Reduction of clinkerization temperature by using phosphogypsum. Journal of Hazardous Materials. 2006. 137. P. 129 – 137. doi:10.1016/j.jhazmat.2005.12.053
7. Islam G.M.S., Chowdhury F.H., Raihan M.T., Amit S.K.S., Islam M.R. Effect of Phosphogypsum on the Properties of Portland Cement. Procedia Engineering. 2017. 171. P. 744 – 751. https://doi.org/10.1016/j.proeng.2017.01.440
8. Huang Y., Qian J., Lu L., Zhang W., Wang S., Wang W., Cheng, X. Phosphogypsum as a component of calcium sulfoaluminate cement: Hazardous elements immobilization, radioactivity and performances. Journal of Cleaner Production. 2020. 2481. 119287. https://doi.org/10.1016/j.jclepro.2019.119287
9. Taher M.A. Influence of thermally treated phosphogypsum on the properties of Portland slag cement. Resources, Conservation and Recycling. 2007. 52 (1). P. 28 – 38. https://doi.org/10.1016/j.resconrec.2007.01.008
10. Ozkul M.H. Utilization of citro- and desulphogypsum as set retarders in Portland cement. Cement and Concrete Research. 2000. 30. P. 1755 – 1758. https://doi.org/10.1016/S0008-8846(00)00409-9
11. Bensted J. Early hydration behaviour of portland cement containing boro-, citro- and desulphogypsum. Cement and Concrete Research. 1980. 10 (2). P. 165 – 171. https://doi.org/10.1016/0008-8846(80)90073-3
12. Elbeyli İ.Y., Derun M., Gülen J., Pişkin S. Thermal analysis of borogypsum and its effects on the physical properties of Portland cement. Cement and Concrete Research. 2003. 33 (11). P. 1729 – 1735. https://doi.org/10.1016/S0008-8846(03)00110-8
13. Sevim U.K., Tumen Y. Strength and fresh properties of borogypsum concrete. Construction and Building Materials. 2013. 48. P. 342 – 347. http://dx.doi.org/10.1016/j.conbuildmat.2013.06.054
14. Yang J., Liu W., Zhang L., Xiao B. Preparation of load-bearing building materials from autoclaved phosphogypsum. Construction and Building Materials. 2009. 23. P. 687 – 693. https://doi.org/10.1016/j.conbuildmat.2008.02.011
15. Myasnikov N.F., Bershakov N.G., Kozlov V.P., Naumov E.G., Shevchenko N.N. Gypsum binder preparation method. Patent RF, no. 2210540, 2003.
16. Semlyov V.S., Reutov V.A., Kondrikov N.B. Method of recycling gypsiferous raw materials. Patent RF, no. 2324654, 2008.
17. Gubskaya A.G., Podluzsky E.Ya., Melenko V.S. Production of gypsum binder and products from natural and industrial raw materials in the Republic of Belarus. Building Materials. 2018. 3. P. 73 – 75. (rus.)
18. Ma B., Jin Z., Su Y., Lu W., Qi H., Hu P. Utilization of hemihydrate phosphogypsum for the preparation of porous sound absorbing material. Construction and Building Materials. 2020. 234. 117346. https://doi.org/10.1016/j.conbuildmat.2019.117346
19. Li X., Zhang Q., Ke B., Wang X., Li L., Li X., Mao S. Insight into the effect of maleic acid on the preparation of a-hemihydrate gypsum from phosphogypsum in Na2SO4 solution. Journal of Crystal Growth. 2018. 493. P. 34 – 40. https://doi.org/10.1016/j.jcrysgro.2018.04.025
20. Li X., Zhang Q., Shen Z., Li L., Li X., Ma S. L-aspartic acid: A crystal modifier for preparation of hemihydrate from phosphogypsum in CaCl2 solution. Journal of Crystal Growth. 2019. 511. P. 48 – 55. https://doi.org/10.1016/j.jcrysgro.2019.01.027
21. Lu W., Ma B., Su Y., He X., Jin Z., Qi H. Preparation of a-hemihydrate gypsum from phosphogypsum in recycling CaCl2 solution. Construction and Building Materials. 2019. 214. P. 399 – 412. https://doi.org/10.1016/j.conbuildmat.2019.04.148
22. Ma B., Lu W., Su Y., Li Y., Gao C., He X. Synthesis of a-hemihydrate gypsum from cleaner phosphogypsum. Journal of Cleaner Production. 2018. 195. 396e405 https://doi.org/10.1016/j.jclepro.2018.05.228
23. Guan B., Yang L., Wu Z., Shen Z., Ma X., Ye Q. Preparation of α-calcium sulfate hemihydrate from FGD gypsum in K, Mg-containing concentrated CaCl2 solution under mild conditions. Fuel. 2009. 88. P. 1286 – 1293. doi:10.1016/j.fuel.2009.01.004
24. Shen Z.X., Guan B.H., Fu H.L., Yang L. Effect of Potassium Sodium Tartrate and Sodium Citrate on the Preparation of a-Calcium Sulfate Hemihydrate from Flue Gas Desulfurization Gypsum in a Concentrated Electrolyte Solution. J. Am. Ceram. Soc., 2009. 92 (12). P. 2894 – 2899. doi:10.1111/j.1551-2916.2009.03330.x
25. Guan B., Kong B., Fu H., Yu J., Jiang G., Yang L. Pilot scale preparation of a-calcium sulfate hemihydrate from FGD gypsum in Ca–K–Mg aqueous solution under atmospheric pressure. Fuel. 2012. 98. P. 48 – 54. http://dx.doi.org/10.1016/j.fuel.2012.03.032
26. Tarasova G.I., Sverguzova S.V., Bubnova N.Yu., Kozlov V.P., Naumov E.G. Method of gypsum article making. Patent RF, no. 2132310, 1999.
27. Sverguzova S.V., Tarasova G.I., Bubnova N.Yu. Promising technologies for the processing of citrogypsum. Ecology and industry of Russia. 1998. 8. P. 20 – 24. (rus.)
28. Sverguzova S.V., Bubnova N.Yu., Tarasova G.I. Utilization of gypsum-bearing waste by energy-saving technology. Scienc-product. 2001. 3. P. 41 – 43. (rus.)
29. Sverguzova S.V., Chernysheva N.V., Chernysh L.I., Shamshurov A.V. The in-fluence of the processing conditions of citrogyp-sum on the composition of the obtained gypsum binder. Building Materials. 2010. 7. P. 31 – 32. 9 (rus.)
30. Sverguzova S.V., Tarasova G.I., Chernysheva N.V., Chernysh L.I. Theoretical substantiation of the possibility of non-fired de-hydration of citrogypsum. Bulletin of BSTU named after V.G. Shukhov. 2010. 2. P. 117 – 121. (rus.)
31. Chernysheva N.V., Sverguzova S.V., Tarasova G.I. Obtaining a gypsum binder from phosphogypsum of Tunisia. Building Materials. 2010. 7. P. 28 – 30. (rus.)
32. Alfimova N.I., Pirieva S.Yu., Elistratkin M.Yu., Kozhuhova N.I., Titenko A.A. Production methods of binders containing gypsum-bearing wastes: a review. Bulletin of BSTU named after V.G. Shukhov. 2020. 11. P. 8 – 23. doi: 10.34031/2071-7318-2020-5-11-8-23 (rus.)
33. Jin Z., Ma Baoguo, Su Y., Lu W., Qi H., Hu P. Effect of calcium sulphoaluminate cement on mechanical strength and waterproof properties of beta-hemihydrate phosphogypsum. Construction and Building Materials. 2020. 242. 118198. https://doi.org/10.1016/j.conbuildmat.2020.118198
34. Yang L., Zhang Y., Yan Y. Utilization of original phosphogypsum as raw material for the preparation of self-leveling mortar. Journal of Cleaner Production. 2016. 127. P. 204 – 213. http://dx.doi.org/10.1016/j.jclepro.2016.04.054
35. Chernysh L.I. Improving the efficiency of building composites obtained using industrial waste. Ecology and industry. 2014. 4. P. 87 – 89. (rus.)
36. Lukyanova A.N., Starostina I.V. Building composite materials based on modified gypsum binders obtained from industrial wastes. Fundamental research. 2013. 4 (4). P. 818 – 822. (rus.)
37. Romero-Hermida M.I., Borrero-López A.M., Alejandre F.J., Flores-Alés V., Santos A., Franco J.M., Esquivias L. Phosphogypsum waste lime as a promising substitute of commercial limes: A rheological approach. Cement and Concrete Composites. 2019. 95. P. 205 – 216. https://doi.org/10.1016/j.cemconcomp.2018.11.007
38. Vinnichenko V.I., Kostyuk T.A., Mokrenko N.N., Ivaschenko T.G. The possibility of obtaining building materials based on phosphogypsum. Dry Build. Mixes. 2014. 3. P. 18 – 19. (rus.)
39. Zhou J., Sheng Z., Li T., Shu Z., Wang Y. Preparation of hardened tiles from waste phosphogypsum by a new intermittent pressing hydration. Ceramics International. 2016. 42 (61). P. 7237 – 7245 https://doi-org.ezproxy.libfl.ru/10.1016/j.ceramint.2016.01.117
40. Zhou J., Li X., Zhao Y., Shu Z., Wang Y., Zhang Y., Shen X. Preparation of paper-free and fiber-free plasterboard with high strength using phosphogypsum. Construction and Building Materials. 2020. 243. 118091. https://doi.org/10.1016/j.conbuildmat.2020.118091
41. Petropavlovskaya V.B., Belov V.V., Novichenkova T.B., Buryanov A.F., Poleonova Yu.Yu., Petropavlovsky, K.S. Resource-saving non-fired gypsum composites. Building Materials. 2015. 6. P. 79 – 81. (rus.)
42. Petropavlovskaya V.B.; Novichenkova T.B.; Buryanov A.F. Improving the technological properties of non-fired hyper-pressed gypsum products. Bulletin of BSTU named after V.G. Shukhov. 2013. 6. P. 75 – 78. (rus)
43. Petropavlovskaya V.B., Buryanov A.F., Novichenkova T.B., Poleonova Yu.Yu. About the effect of nanofillers on the properties of non-fired gypsum composites. Actual problems of modern science, technology and education. 2013. Vol. 2. 71. P. 217 – 220. (rus.)
44. Petropavlovskaya V.B. Low-energy gypsum materials and products based on industrial waste. Building Materials. 2006. 7. P. 8 – 9. (rus.)
45. Mirsaev R.N., Babkov V.V., Nedoseko I.V., Yunusova S.S., Akhmadulina I.I., Shayakhmetov U.S. Structural formation and hardening of pressed compositions based on calcium sulfate dehydrate. Building Materials. 2009. 6. P. 6 – 9. (rus.)
46. Alfimova N.I., Titenko A.A., Nikulin I.S., Galdun Yu.V., Pirieva S.Yu., Elistratkin M.Yu. Raw mixture for modified citrogypsum articles and method of their production. Patent RF, no. 2693808, 2018.
47. Alfimova N.I., Titenko A.A., Nikulin I.S., Galdun Yu.V., Pirieva S.Yu., Chepurnyh, A.A. Raw mix for sawdust concrete and a method of manufacturing products from sawdust concrete. Patent RF, no. 2695313, 2018.
48. Hua S., Wang K., Yao X. Developing high performance phosphogypsum-based cementitious materials for oil-well cementing through a step-by-step optimization method. Cement and Concrete Composites. 2016. 72. P. 299 – 308. https://doi.org/10.1016/j.cemconcomp.2016.05.017
49. Edamenko A.S., Klimenko V.G. About possible use man-made raw materials in production of construction materials. Internet magazine "Technosphere Safety Technologies". 2013. 1. http://agps-2006.narod.ru/ttb/2013-1/06-01-13.ttb.pdf (rus)
50. Tian T., Yun Y., Hu Z.H., Chen Y., Shi J. Utilization of original phosphogypsum for the preparation of foam concrete. Constr. Build. Mater. 2016. 115. P. 143 – 152. https://doi.org/10.1016/j.conbuildmat.2016.04.028
51. Yang L., Yan Y., Hu Z. Utilization of phosphogypsum for the preparation of non-autoclaved aerated concrete. Construction and Building Materials. 2013. 4. P. 600 – 606. http://dx.doi.org/10.1016/j.conbuildmat.2013.03.070
52. López F.A., Gázquez M., Alguacil F.J., Bolívar J.P., García-Díaz I., López-Coto I. Microencapsulation of phosphogypsum into a sulfur polymer matrix: physico-chemical and radiological characterization. Journal of Hazardous Materials. 2011. 192. P. 234 – 245. doi:10.1016/j.jhazmat.2011.05.010
53. Vaicˇiukyniene D., Nizevicˇiene˙ D., Kiele˙ A., Janavicˇius E., Pupeikis D. Effect of phosphogypsum on the stability upon firing treatment of alkali-activated slag. Construction and Building Materials. 2018. 184. P. 485 – 491. https://doi.org/10.1016/j.conbuildmat.2018.06.213
54. Rashad A.M. Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles. Journal of Cleaner Production. 2015. 87. 717e725. http://dx.doi.org/10.1016/j.jclepro.2014.09.080
55. Liu S., Wang L., Yu B. Effect of modified phosphogypsum on the hydration properties of the phosphogypsum-based supersulfated cement. Construction and Building Materials. 2019. 21430. P. 9 – 16 https://doi.org/10.1016/j.conbuildmat.2019.04.052
56. Liu S., Ouyang J., Ren J. Mechanism of calcination modification of phosphogypsum and its effect on the hydration properties of phosphogypsum-based supersulfated cement. Construction and Building Materials. 2020. 24320. 118226
57. Emrullahoglu Abi C.B. Effect of borogypsum on brick properties. Construction and Building Materials. 2014. 59. P. 195 – 203. http://dx.doi.org/10.1016/j.conbuildmat.2014.02.012
58. Türkel S., Aksin E. A comparative study on the use of fly ash and phosphogypsum in the brick production. Sadhana. 2012. 37. P. 595 – 607. https://doi.org/10.1007/s12046-012-0099-8
59. Contreras M., Teixeira S.R., Santos G.T.A., Gázquez M.J., Romero M., Bolívar J.P. Influence of the addition of phosphogypsum on some properties of ceramic tiles. Construction and Building Materials. 2018. 17530. P. 588 – 600. https://doi.org/10.1016/j.conbuildmat.2018.04.131
60. Vasilenko T.A., Ali Saleh-Jafer Physical and mechanical properties of expanded clay gravel obtained using calcium-containing technogenic materials. Modern problems of science and education. 2015.1-2. Available online: http://science-education.ru/ru/article/view?id=19899 (accessed on 04.05.2020). (rus.)
61. Amrani M., Taha Y., Kchikach A., Benzaazoua M., Hakkou R. Phosphogypsum recycling: New horizons for a more sustainable road material application. Journal of Building Engineering. 2020. 101267 https://doi.org/10.1016/j.jobe.2020.101267
62. Shen W., Zhou M., Ma W., Hub J., Cai, Z. Investigation on the application of steel slag-fly ash-phosphogypsum solidified material as road base material. Journal of Hazardous Materials. 2009. 164. P. 99 – 104. doi:10.1016/j.jhazmat.2008.07.125
63. Folek S., Walawska B., Wilczek B., Mioekiewicz J. Use of phosphogypsum in road construction. Journal of Building Engineering. 2011. 13 (2). P. 18 – 22. doi:10.2478/v10026-011-0018-5
64. Cuadri A.A., Navarro F.J., García-Morales M., Bolívar J.P. Valorization of phosphogypsum waste as asphaltic bitumen modifier. Journal of Hazardous Materials. 2014. 27930. P. 11 – 16 https://doi.org/10.1016/j.jhazmat.2014.06.058
65. Kochetkov A.V., Shchegoleva N.V., Korotkovskij S.A., Talalaj V.V., Vasil'ev Yu.E., Shashkov I.G. The device layers of transport structures from phosphogypsum hemihydrate (waste by-product of the production of nitrogen-phosphorus fertilizers). Internet magazine "Transport facilities"2019. 1. https://t-s.today/PDF/18SATS119.pdf, doi: 10.15862/18SATS119 (rus.)
66. Gerasimov D.V., Ignatiev A.A., Gotovtsev V.M., Golikov I.V. Prospects for the use of phosphogypsum in the production of asphalt concrete. Roads and Bridges.2018. 40. P. 304 – 315. (rus.)
Alfimova N.I., Pirieva S.Yu., Titenko A.A. Utilization of gypsum-bearing wastes in materials of the construction industry and other areas. Construction Materials and Products. 2021. 4 (1). P. 5 – 17. https://doi.org/10.34031/2618-7183-2021-4-1-5-17