Магнитные наночастицы оксида железа: синтез, модификация поверхности и функционализация люминесцентными материалами

https://doi.org/10.58224/2618-7183-2023-6-2-58-80
За последние два десятилетия были открыты новые физические и структурные свойства оксида железа, особенно в нанометровом диапазоне, которые нашли применение в различных инженерных, бионаномедицинских, экологических и высокотехнологичных отраслях. Изучено несколько методов синтеза магнитных наночастиц оксида железа, влияющих на их размер, распределение по размерам, элементный состав, кристаллическую структуру и множество других физических свойств. Также подробно объясняются достижения в стратегиях химии поверхности для функционализмами магнитных наночастиц на основе оксида железа. Многие вещества используются для поверхностного покрытия и функционализмами МНЧ, включая органические и неорганические соединения. Цель настоящего обзора состоит в том, чтобы предоставить отчет об активности развития композитных Мелкие магнитные объекты и уделить внимание модифицированным наночастицам на основе оксида железа, которые являются стабильными, легко синтезируются, обладают высокой удельной поверхностью и могут быть легко отделены с помощью магнитного поля. Из-за высокой поверхностной энергии наночастиц оксида железа часто встречается их агломерация со временем. Таким образом, крайне важно модифицировать их поверхность, чтобы предотвратить агрегацию и ограничить адсорбцию флуоресцентных молекул на их поверхности. Кроме того, такие химические модификации приводят к тому, что МНЧ хорошо диспергируются, увеличивают магнитную восприимчивость и позволяют управлять их химическими свойствами. Были разобраны различные стратегии ко-валентной связи с флуоресцентными органическими красителями. Поверхностное покрытие и функционализмами НЧ оксида железа позволяет им прикрепляться к флуоресцентным молекулам и предотвращать тушение фотолюминесценции, что делает их перспективным материалом для неразрушающего магнитного контроля.
[1] Mourdikoudis S., Pallares R.M., Thanh N.T.K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties // Nanoscale. 2018. Vol. 10 (27). P. 12871 – 12934.
[2] Chavan N., Dharmaraj D., SarapS., & Surve C. Magnetic nanoparticles: A new era in nano-technology // Journal of Drug Delivery Science and Technology. 2022. Vol. 77. P.103899.
[3] Agalya P., Saravanan T., Kumar G.S., Cholan S., Karunakaran G., Van Minh N. Surfactant-assisted microwave synthesis of luminescent/magnetic bifunctional hydroxyapatite nanorods for dual-model imaging // Optik. 2021. Vol. 225. P. 165564.
[4] Li J.H., Au B., Rentsch J., Block S., Ewers H. Directed Manipulation of Membrane Proteins by Fluorescent Magnetic Nanoparticles // Biophysical Journal. 2020. Vol. 118 (3). P. 313a.
[5] Gambhir R.P., Rohiwal S.S., Tiwari A.P. Multifunctional surface functionalized magnetic iron oxide nanoparticles for biomedical applications: A review // Appl. Surf. Sci. Adv. 2022. Vol. 11. P. 100303.
[6] Getahun Y., Gardea-TorresdeyJ., Manciu F.S., LiX. & El-Gendy A.A. Green synthesized superparamagnetic iron oxide nanoparticles for water treatment with alternative recyclability // Journal of Molecular Liquids. 2022. Vol. 356. P. 118983.
[7] Fadeyev F.A., Blyakhman F.A., Safronov A.P., Melnikov G.Y., Nikanorova A.D., Novose-lova I.P., Kurlyandskaya G.V. Biological Impact of γ-Fe2O3 Magnetic Nanoparticles Ob-tained by Laser Target Evaporation: Focus on Magnetic Biosensor Applications // Biosen-sors. 2022. Vol. 12. P. 627.
[8] Mao Y., Li Y., Zang F. et al. Continuous synthesis of extremely small-sized iron oxide na-noparticles used for T1-weighted magnetic resonance imaging via a fluidic reactor // Sci. China Mater. 2022. Vol. 65. P. 1646 – 1654.
[9] De Melo F.M., Mattioni J.V., Dias F., Fu Y., Toma H.E. Solvophobic-controlled synthesis of smart magneto-fluorescent nanostructures for real-time inspection of metallic fractures // Nanoscale Advances. 2021. Vol. 3 (12). P. 3593 – 3604.
[10] Bossmann S.H., Payne M.M., Kalita M., Bristow R.M.D., Afshar A., Perera A.S. Iron-Based Magnetic Nanosystems for Diagnostic Imaging and Drug Delivery: Towards Transformative Biomedical Applications // Pharmaceutics. 2022. Vol. 14. P. 2093.
[11] Gudkov S.V., Burmistrov D.E., Serov D.A., Rebezov M.B., Semenova A.A., Lisitsyn A.B. Do Iron Oxide Nanoparticles Have Significant Antibacterial Properties? // Antibiotics. 2021. Vol. 10 (7). P. 884.
[12] Ganapathe L.S., Mohamed M.A., Mohamad Yunus R., Berhanuddin D.D. Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation // Magnetochemistry. 2020. Vol. 6. P. 68.
[13] Mosayebi J., Kiyasatfar M., Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications // Adv. Health Mater. 2017. Vol. 6. P. 1700306.
[14] Mulder W.J., Koole R., Brandwijk R.J., Storm G., Chin P.T., Strijkers G.J., de Mello Donegá C., Nicolay K., Griffioen A.W. Quantum Dots with a Paramagnetic Coating as a Bimodal Molecular Imaging Probe // Nano Lett. 2006. Vol. 6. P. 1 – 6.
[15] TurcheniukK., Tarasevych A.V., Kukhar V.P., Boukherroub R., & SzuneritsS. Recent ad-vances in surface chemistry strategies for the fabrication of functional iron oxide based mag-netic nanoparticles // Nanoscale. 2013. Vol. 5 (22). P.10729 – 1075.
[16] Hammad M., Hardt S., Mues B., Salamon S., Landers J., Slabu I., … Wiggers H. Gas-phase synthesis of iron oxide nanoparticles for improved magnetic hyperthermia performance // Journal of Alloys and Compounds. 2020. Vol. 824 P. 153814.
[17] Chen D., Ni S., Chen Z. Synthesis of Fe3O4 nanoparticles by wet milling iron powder in a planetary ball mill // China Particuology. 2007. Vol. 5 (5) P. 357 – 358.
[18] Fazio E., Santoro M., Lentini G., Franco D., Guglielmino S.P.P., Neri F. Iron oxide nanopar-ticles prepared by laser ablation: Synthesis, structural properties and antimicrobial activity // Colloids and Surfaces A: Phy. and Eng. Aspects. 2016. Vol. 490. P. 98 – 103.
[19] Granata C., Russo R., Esposito E. et al. Magnetic properties of iron oxide nanoparticles in-vestigated by nanoSQUIDs // Eur. Phys. J.B. 2013. Vol. 86. P. 272.
[20] Lee C., Lee H., Westervelt R. Microelectromagnets for the control of magnetic nanoparticles // Appl. Phys. Lett. 2001. Vol. 79. P. 3308.
[21] Mathur S., Barth S., Werner U., Hernandez-Ramirez F. and Romano-Rodriguez A. Chemical Vapor Growth of One-dimensional Magnetite Nanostructures // Adv. Mater. 2008. Vol. 20. P. 1550.
[22] Khan I., Morishita S., Higashinaka R., Matsuda T.D. et al. Synthesis, characterization and magnetic properties of ε-Fe2O3 nanoparticles prepared by sol-gel method // Journal of Mag-netism and Magnetic Materials. 2021. Vol. 538. P. 168264.
[23] Mireles L.-K., Sacher E., Yahia L., Laurent S., Stanicki D. A comparative physicochemical, morphological and magnetic study of silane-functionalized superparamagnetic iron oxide nanoparticles prepared by alkaline coprecipitation // Inter. J. of Biochemistry & Cell Biology. 2016. Vol. 75. P. 203 – 211.
[24] Qian L., Peng J., Xiang Z.P. et al. Effect of annealing on magnetic properties of Fe/Fe3O4 soft magnetic composites prepared by in-situ oxidation and hydrogen reduction methods // J. Alloys & Comp. 2019. Vol. 778. P. 712 – 720.
[25] Zhuang L., Zhang W., Zhao Y., Shen H., Lin H., & Liang J. Preparation and Characterization of Fe3O4 Particles with Novel Nanosheets Morphology and Magnetochromatic Property by a Modified Solvothermal Method // Scientific Reports. 2015. Vol. 5 (1). P. 9320.
[26] Salazar-Alvarez G., Muhammed M., Zagorodni A.A. Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution // Chemical Engineering Science. 2006. Vol. 61 (14). P. 4625 – 4633.
[27] Karimzadeh I., Aghazadeh M., Ganjali M.R., Doroudi T. et al. Preparation and characteriza-tion of iron oxide (Fe3O4) nanoparticles coated with polyvinylpyrrolidone/polyethylenimine through a facile one-pot deposition route // Journal of Magnetism and Magnetic Materials. 2017. Vol. 433. P. 148 – 154.
[28] Strobel R., Pratsinis S.E. Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv // Powder Tech. 2009. Vol. 20 (2). P. 190 – 194.
[29] Shin N., Saravanakumar K. & Wang M.H. Sonochemical Mediated Synthesis of Iron Oxide (Fe3O4 and Fe2O3) Nanoparticles and their Characterization, Cytotoxicity and Antibacterial Properties // J. Clust Sci. 2019. Vol. 30. P. 669 – 675.
[30] Glasgow W., Fellows B., Qi B., Darroudi T., Kitchens C., Ye L., … Mefford O.T. Continu-ous synthesis of iron oxide (Fe3O4) nanoparticles via thermal decomposition // Particuology. 2016. Vol. 26. P. 47 – 53.
[31] Meneses-Brassea B.P., Cyr C.M., Martinez I., et al. Facile synthesis of superparamagnetic Fe3O4 nanoparticles at therapeutic temperature range for magnetic hyperthermia therapy // Journal of Nano. Research. 2020. Vol. 22 (11). P. 1 – 6.
[32] Das S., Jana S. A tubular nanoreactor directing the formation of in situ iron oxide nanorods with superior photocatalytic activity // Environmental Science: Nano. 2017. Vol. 4 (3). P. 596 – 603.
[33] Narayanan K.B., Sakthivel N. Biological synthesis of metal nanoparticles by microbes // Adv. Coll. Interface. Sci. 2010. Vol. 156. P. 1.
[34] Vasantharaj S., Sathiyavimal S., Senthilkumar P., LewisOscar, F., and Pugazhendhi A. Bio-synthesis of Iron Oxide Nanoparticles Using Leaf Extract of Ruellia Tuberosa: Antimicrobial Properties and Their Applications in Photocatalytic Degradation // J. Photochem. Photobiol. B: Biol. 2019. Vol. 192. P. 74 – 82.
[35] Subramaniyam V., Subashchandrabose S.R., Ganeshkumar V., Thavamani P., Chen Z., Naidu R., et al. Cultivation of Chlorella on Brewery Wastewater and Nano-Particle Biosynthesis by its Biomass // Bioresour. Technol. 2016. Vol. 211. P. 698 – 703.
[36] Torabian P., Ghandehari F., Fatemi M. Biosynthesis of Iron Oxide Nanoparticles by Cyto-plasmic Extracts of Bacteria Lactobacillus Casei // Asian J. Green Chem. 2018. Vol. 2 (3). P. 181 – 188.
[37] Mathur P., Saini S., Paul E., Sharma C., Mehtani P. Endophytic fungi mediated synthesis of iron nanoparticles: Characterization and application in methylene blue decolorization // Cur-rent Research in Green and Sustainable Chemistry. 2021. Vol. 4. P. 100053.
[38] Yusoff A.H., Salimi M.N., Jamlos M.F. A review: Synthetic strategy control of magnetite nanoparticles production // Adv. Nano Res. 2018. Vol. 6. P. 1.
[39] Guardia P., Labarta A., Batlle X. Tuning the size, the shape, and the magnetic properties of iron oxide nanoparticles // J. Phys. Chem. C. 2011. Vol. 115. P. 390 – 396.
[40] Issa B., Obaidat I.M., Albiss B.A., Haik Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications // Int. J. Mol. Sci. 2013. Vol. 14. P. 21266 – 21305.
[41] Soler M.A.G., Paterno L.G. Magnetic Nanomaterials, in: Nanostructures. Elsevier Inc. 2017. P. 147 – 186.
[42] Torres-gómez N., Nava O., Argueta-Figueroa L., et al. Shape tuning of magnetite nanoparti-cles obtained by hydrothermal synthesis: Effect of temperature // J. Nanomater. 2019. Vol. 2019 P. 1 – 15.
[43] Tadic M., Trpkov D., Kopanja L., Vojnovic S., Panjan M. Hydrothermal synthesis of hema-tite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties // J. Alloys Compd. 2019. Vol. 792. P. 599 – 609.
[44] Mcgrath A.J., Cheong S., Henning A.M., Gooding J.J., Tilley R.D. Size and shape evolution of highly magnetic iron nanoparticles from successive growth reactions // Chem. Commun. 2017. Vol. 53. P. 11548 – 11551.
[45] Williams D.S., Pijpers I.A.B., Ridolfo R., van Hest, J.C. Controlling the Morphology of Co-polymeric Vectors for next Generation Nanomedicine // J. Controlled Release. 2017. Vol. 259. P. 29 – 39.
[46] Massignani M., LoPresti C., Blanazs A., Madsen J., Armes S.P., Lewis A.L., Battaglia G. Controlling Cellular Uptake by Surface Chemistry, Size, and Surface Topology at the Na-noscale // Small. 2009. Vol. 5 (21). P. 2424 – 2432.
[47] Euliss L.E., DuPont J.A., GrattonS., DeSimone J. Imparting Size, Shape, and Composition Control of Materials for Nanomedicine // Chem. Soc. Rev. 2006. Vol. 35 (11). P. 1095 – 1104.
[48] Koo H., Moon H., Han H., Na J.H., Huh M.S., Park J.H., Woo S.J., Park K.H., Chan Kwon I., Kim K., Kim H. The Movement of Self-Assembled Amphiphilic Polymeric Nanoparticles in the Vitreous and Retina after Intravitreal Injection // Biomaterials. 2012. Vol. 33. P. 3485 – 3493.
[49] Ridolfo R., Tavakoli S., Junnuthula V., Williams D.S., Urtti A., van Hest J.C. Exploring the impact of morphology on the properties of biodegradable nanoparticles and their diffusion in complex biological medium // Biomacromolecules. 2020. Vol. 22 (1). P. 126 – 133.
[50] Gavilán H., Simeonidis K., Myrovali E., Mazarío E., et al. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios // Nanoscale. 2021. Vol. 13 (37). P. 15631 – 15646.
[51] Salihov S.V., Sviridenkova N.V., Savchenko A.G., Klyachko N.L., Beloglazkina E.K., Ma-jouga A.G., Golovin Y.I., Ivanenkov Y.A., Krechetov S.P., Veselov M.S., Chufarova N.V. Recent advances in the synthesis of Fe3O4@Au core/shell nanoparticles // Journal of Mag-netism and Magnetic Materials. 2015. Vol. 394. P. 173 – 178.
[52] Kiziltaş H., Tekin T., Tekin D. Synthesis, characterization of Fe3O4@SiO2@ZnO composite with a core-shell structure and evaluation of its photocatalytic activity // Journal of Envi-ronmental Chemical Engineering. 2020. Vol. 8 (5). P. 104160.
[53] Rani N., Dehiya B.S. Influence of anionic and non-ionic surfactants on the synthesis of core-shell Fe3O4@TiO2 nanocomposite synthesized by hydrothermal method // Ceramics Inter-national. 2020. Vol. 46 (15) P. 23516 – 23525.
[54] Tarhan T., Ulu A., Sariçam M., Çulha M., & Ates B. Maltose Functionalized Magnetic Core/Shell Fe3O4@Au Nanoparticles for An Efficient L-Asparaginase Immobilization // In-ternational Journal of Biological Macromolecules. 2020. Vol. 142 (1). P. 443 – 451
[55] Rho W.-Y., Kim H.-M., Kyeong S., Kang Y.-L., et al. Facile synthesis of monodispersed sil-ica-coated magnetic nanoparticles // Journal of Industrial and Engineering Chemistry. 2014. Vol. 20 (5). P. 2646 – 2649.
[56] Petrov D., Lin C.-R., Ivantsov R., Ovchinnikov S.G., Zharkov S., Yurkin G., … Lyubutin I. S. Characterization of the iron oxide phases formed during the synthesis of core-shell FexOy@C nanoparticles modified with Ag // Nanotechnology. 2020. Vol. 31. P. 395703.
[57] Kotoulas K.T., Campbell J., Skirtach A.G., Volodkin D., Vikulina A. Surface Modification with Particles Coated or Made of Polymer Multilayers // Pharmaceutics. 2022. Vol. 14. P 2483.
[58] Smit M., Lutz M. Polymer-coated magnetic nanoparticles for the efficient capture of Myco-bacterium tuberculosis (Mtb) // SN Appl. Sci. 2020. Vol. 2. P. 1658.
[59] Bai H, Liu Z, Sun D. Highly water soluble and recovered dextran coated Fe3O4 magnetic nanoparticles for brackish water desalination // Sep. Purif. Technol. 2011. Vol. 81. P. 392 – 399.
[60] Predescu A.M., Matei E., Berbecaru A.C., Pantilimon C., Drăgan C., Vidu R., Predescu C., Kuncser V. Synthesis and characterization of dextran-coated iron oxide nanoparticles // R Soc Open Sci. 2018. Vol. 5 (3). P. 171525.
[61] Shin J.R., An G.S., Choi S.C. Influence of Carboxylic Modification Using Polyacrylic Acid on Characteristics of Fe3O4 Nanoparticles with Cluster Structure // Processes. 2021. Vol. 9. P. 1795.
[62] Wan K., Wang G., Xue S., Xiao Y., Fan J., Li L., Miao Z. Preparation of Humic Acid/l-Cysteine-Codecorated Magnetic Fe3O4 Nanoparticles for Selective and Highly Efficient Ad-sorption of Mercury // ACS Omega. 2021. Vol. 6 (11). P. 7941 – 7950.
[63] Pušnik K., Peterlin M., Cigić I. K., Marolt G., Kogej K., Mertelj A., … Makovec D. Adsorp-tion of Amino Acids, Aspartic Acid, and Lysine onto Iron-Oxide Nanoparticles // The Jour-nal of Physical Chemistry C. 2016. Vol. 120 (26). P. 14372 – 14381.
[64] R˘acuciu M., Barbu-Tudoran L., Oancea S., Dr˘aghici O., Morosanu C., Grigoras M., Brînz˘a F.,Creang˘a D.E. Aspartic Acid Stabilized Iron Oxide Nanoparticles for Biomedical Applications // Nanomaterials. 2022. Vol. 12. P. 1151.
[65] Yathindranath V., Sun Z., Worden M., Donald L.J., Thliveris J.A., Miller D.W., & Hegmann T. One-Pot Synthesis of Iron Oxide Nanoparticles with Functional Silane Shells: A Versatile General Precursor for Conjugations and Biomedical Applications // Langmuir. 2013. Vol. 29 (34). P. 10850 – 10858.
[66] Quanguo H., Lei, Z., Wei W., Rong H., Jingke H. Preparation and Magnetic comparison of Silane-Functionalized Magnetite Nanoparticles // Sens. Mater. 2010. Vol. 22. P. 285 – 295.
[67] Ganguly S., Margel S. Bioimaging Probes Based on Magneto-Fluorescent Nanoparticles // Pharmaceutics. 2023. Vol. 15. P. 686.
[68] Khuyen H.T., Huong T.T., Huong N.T., Thai Ha V.T., Van N.D., Nghia, V.X., … Minh L.Q. Luminescence properties of a nanotheranostics based on a multifunctional Fe3O4/Au/Eu[1-(2-naphthoyl)-3,3,3-trifluoroacetone]3 nanocomposite // J. Optical Materials. 2020. Vol. 109. P. 110229.
[69] Rashidi Dafeh S., Iranmanesh P., Salarizadeh P. Fabrication, optimization, and characteriza-tion of ultra-small superparamagnetic Fe3O4 and biocompatible Fe3O4@ZnS core/shell magnetic nanoparticles: Ready for biomedicine applications // J. Materials Science and En-gineering. 2019. Vol. 98. P. 205 – 212.
[70] Pooresmaeil M., & Namazi H. pH-sensitive ternary Fe3O4/GQDs@G hybrid microspheres; Synthesis, characterization and drug delivery application // Journal of Alloys and Com-pounds. 2020. Vol. 846. P. 156419.
[71] Sahoo Y., Goodarzi A., Swihart M.T., Ohulchanskyy T.Y., Kaur N., Furlani E.P., Prasad P.N. Aqueous Ferrofluid of Magnetite Nanoparticles:  Fluorescence Labeling and Magneto-phoretic Control // J. Phys. Chem. B. 2005. Vol. 109. P. 3879 – 3885.
[72] Veiseh O., Sun C., Gunn J., Kohler N., Gabikian P., Lee D., Bhattarai N., Ellenbogen R., Sze R., Hallahan A., Olson J., Zhang M. Optical and MRI Multifunctional Nanoprobe for Target-ing Gliomas // Nano Lett. 2005. Vol. 5. P. 1003 – 1008.
[73] Bertorelle F., Wilhelm C., Roger J., Gazeau F., Ménager C., Cabuil V. Fluorescence-Modified Superparamagnetic Nanoparticles: Intracellular Uptake and Use in Cellular Imag-ing // Langmuir. 2006. Vol. 22. P. 5385 – 5391.
[74] Gawali S.L., Shelar S.B., Gupta J., Barick K.C., & Hassan P.A. Immobilization of protein on Fe3O4 nanoparticles for magnetic hyperthermia application // International Journal of Bio-logical Macromolecules. 2021. Vol. 166 (1). P 851 – 860.
[75] Ioniţă M., Vlăsceanu G.M., Watzlawek A.A., Voicu S.I., Burns J.S., Iovu H. Graphene and functionalized graphene: Extraordinary prospects for nanobiocomposite materials // Compo-sites Part B: Eng. 2017. Vol. 121. P. 34 – 57.
[76] He H., Sun D.W., Pu H., & Huang L. Bridging Fe3O4@Au Nanoflowers and Au@Ag Nan-ospheres with Aptamer for Ultrasensitive SERS Detection of Aflatoxin B1 // Food Chemistry. 2020. Vol. 324. P. 126832.
[77] Dai Z., Wen W., Guo Z., Song X.-Z., Zheng K., Xu X., … Tan, Z. SiO2-coated magnetic nano-Fe3O4 photosensitizer for synergistic tumour-targeted chemophotothermal therapy // Colloids and Surfaces B: Bio. 2020. Vol. 195. P. 111274
[78] Vieira Ferreira L.F., Ferreira Machado I., Gama A., Lochte F., Socoteanu R.P., & Boscencu R. Surface photochemical studies of nano-hybrids of A3B porphyrins and Fe3O4 silica-coated nanoparticles // J. of Photochem. & Photobio. A: Chem. 2020. Vol. 387. P. 112152
[79] Quarta A., Di Corato R., Manna L., Argentiere S., Cingolani R., Barbarella G., & Pellegrino, T. Multifunctional Nanostructures Based on Inorganic Nanoparticles and Oligothiophenes and Their Exploitation for Cellular Studies // Journal of the American Chemical Society. 2008. Vol. 130 (32). P. 10545 – 10555.
[80] Abbas M., Torati S.R., Lee C.S., Rinaldi C., Kim C.G. Fe3O4/SiO2 Core/Shell Nanocubes: Novel Coating Approach with Tunable Silica Thickness and Enhancement in Stability and Biocompatibility // J. Nanomed Nano. 2014. Vol. 5. P 244.
[81] Zhi L., Liu J., Wang Y., Zhang W., Wang B., Xu Z.,… Li G. Multifunctional Fe3O4 nano-particles for highly sensitive detection and removal of Al(iii) in aqueous solution // Na-noscale. 2013. Vol. 5 (4). P 1552.
[82] Sun Z.-H., Zhou L.-H., Deng G.-J., et al. Tumor Targeting of Fluorescent Magnetic IR780-Fe3O4 Nanoparticles with for Detection of Circulating Tumor Cells // Chinese Journal of Analytical Chemistry. 2017. Vol. 45 (10). P. 1427 – 1433.
[83] Wen J., Sun Y. Colored magnetic nanoparticles to improve the sustainability of textile dyeing // TechConnect Briefs 2018 – Adv. Mater. 2018. Vol. 2. P. 245 – 248.
[84] García Acevedo P., González Gómez M.A., Arnosa Prieto Á., et al. Fluorescent Single-Core and Multi-Core Nanoprobes as Cell Trackers and Magnetic Nanoheaters // J. Magnetochem-istry. 2022. Vol. 8. P. 83.
[85] Ali T. H., Mandal A. M., Alhasan A., Dehaen W. Surface fabrication of magnetic core-shell silica nanoparticles with perylene diimide as a fluorescent dye for nucleic acid visualization // Journal of Molecular Liquids. 2022. Vol. 359. P. 119345.
[86] Yeo K.M., Gao C.J., Ahn K.-H., Lee I.S. Superparamagnetic iron oxide nanoparticles with photoswitchable fluorescence // Chem. Commun. 2008. Vol. 38. P. 4622 – 4624.
[87] Luo C., Yu B., Qi Q., Mi Y., Cao Z., Cui Q., & Zhao Z. Construction of magnetic-fluorescent bifunctional nanoparticles via miniemulsion polymerization for cell imaging // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. Vol. 613. P. 126062.
[88] Kutman M.K., Muftuler F.B., Guldu O.K., & Harmansah C. Magnetic nanoparticles synthe-sized by green chemistry and investigation of its application in the material industry // Inter-national Journal of Computational and Experimental Science and Engineering. 2020. Vol. 6(3). P. 173 – 175.
[89] Мурадова А.Г., Алхилали Х.А и др. // Разработка флуоресцентных композиционных наночастиц оксидов железа для магнитной дефектоскопии. Российские нанотехнологии 2021. Т. 16. № 4. С. 107 – 114.
[90] Harmansah C., Kutman M.K., Muftuler F.B. Preparation of iron oxide nanoparticles by ba-nana peels extract and its usage in NDT // Measurement. 2022. Vol. 204. P. 112081.
[91] De Melo F.M., Grasseschi D., Brandão B.B.N.S., Fu Y., Toma H.E. Superparamagnetic Ma-ghemite-Based CdTe Quantum Dots as Efficient Hybrid Nanoprobes for Water-Bath Mag-netic Particle Inspection // ACS Applied Nano Materials. 2018. Vol. 1 (6). P. 2858 – 2868.
Алхилали Хасан Абдулкадим Аббас Магнитные наночастицы оксида железа: синтез, модификация поверхности и функционализация люминесцентными материалами // Строительные материалы и изделия. 2023. Том 6. № 2. С. 58 – 80. https://doi.org/10.58224/2618-7183-2023-6-2-58-80