Introduction: Fatigue failure of asphalt concrete pavements is one of the most common causes of premature failure of pavements on operational motorways. Modern laboratory equipment and software tools make it possible to comprehensively consider the problem of fatigue failure both for laboratory deformation modes and for operational ones. The aim of the research: a comprehensive study of fatigue fracture of asphalt concretes used in the upper base layer (UBL), lower pavement layer (LPL), and upper pavement layer (UPL) in operational and laboratory deformation modes. Methods: Laboratory studies are carried out on a four-point bending unit in accordance with the methodology of GOST R 58401.11-19. The analysis of operational modes of deformation is carried out on the mathematical model of the stress-strain state of the layered medium. During the stress-strain state analysis, tensile and compressive radial strains at the lower boundary of each asphalt concrete layer were calculated and compared with the deformation modes modelled under operational conditions. Resistance to fatigue failure of asphalt concretes used for the top layer of base course (A32Ot), bottom layer of pavement (A22Nt), top layer of pavement (SMA-16) was investigated using laboratory equipment for four-point bending tests. Results and discussion: Asphalt concrete stiffness modulus reduction curves depending on the number of applied load cycles were obtained. Using the mathematical model, the operational modes of joint deformation of asphalt concrete layers under the load from the design vehicle are investigated.
[1] Cheng H., Liu J., Sun L., Liu L., Zhang Y. Fatigue behaviours of asphalt mixture at different temperatures in four-point bending and indirect tensile fatigue tests. Construction and Building Materials. 2021. 273. P. 121675. https://doi.org/10.1016/j.conbuildmat.2020.121675
[2] Kim M., Mohammad L.N., Jordan T. Fatigue performance of asphalt mixture containing recycled materials and warm-mix technologies under accelerated loading and four point bending beam test. Journal of cleaner production. 2018. 192. P. 656 – 664. https://doi.org/10.1016/j.jclepro.2018.04.070
[3] Varma R., Atul Narayan S.P., Murali Krishnan J. Quantification of viscous and fatigue dissipation of asphalt concrete in four-point bending tests. Journal of Materials in Civil Engineering. 2019. 31 (12). P. 04019285. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002938.
[4] Colpo G. B., Brito L. A. T., Doering D., Mocelin D. M., Hilgert A. P., Johnsto M., Ceratti J. A. P. Fatigue behavior study of a dense graded HMA using the four point bending beam test aided by an in-situ instrumentation at BR-116/RS, Brazil. Transportes. 2020. 28 (2). P. 14 – 28. https://doi.org/10.14295/transportes.v28i2.1907
[5] Cheng H., Liu L., Sun L. Bridging the gap between laboratory and field moduli of asphalt layer for pavement design and assessment: A comprehensive loading frequency-based approach. Frontiers of structural and civil engineering. 2022. 16 (3). P. 267 – 280. https://doi.org/10.1007/s11709-022-0811-7
[6] Ishaq M. A., Giustozzi F. Correlation between rheological fatigue tests on bitumen and various cracking tests on asphalt mixtures. Materials. 14 (24). P. 7839.
[7] Bennert T., Haas E., Wass E. Indirect tensile test (IDT) to determine asphalt mixture performance indicators during quality control testing in New Jersey. Transportation research record. 2018. 2672. 28. P. 394 – 403. https://doi.org/10.1177/0361198118793276
[8] Chen H., Alamnie M. M., Barbieri D. M., Zhang X., Liu G., Hoff I. Comparative study of indirect tensile test and uniaxial compression test on asphalt mixtures: Dynamic modulus and stress-strain state. Construction and Building Materials. 2023. 366. P. 130187https://doi.org/10.1016/j.conbuildmat.2022.130187
[9] Yin F., Garita J., Taylor A., West R. Refining the indirect tensile (IDT) Nflex factor test to evaluate cracking resistance of asphalt mixtures for mix design and quality assurance. Construction and Building Materials. 2018. 172. P. 396 – 405. https://doi.org/10.1016/j.conbuildmat.2018.03.251.
[10] Safi F.R., Al-Qadi I.L., Hossain K., Ozer H. Total recycled asphalt mixes: Characteristics and field performance. Transportation research record. 2019. 2673. 12. P. 149 – 162. https://doi.org/10.1177/0361198119849915
[11] Yi X., Chen H., Wang H., Shi C., Yang J. The feasibility of using epoxy asphalt to recycle a mixture containing 100% reclaimed asphalt pavement (RAP). Construction and Building Materials. 2022. 319. P. 126122. https://doi.org/10.1016/j.conbuildmat.2021.126122
[12] Yu X., Han Z., Cai Y., Liu L., Sun L. Study on Low-Temperature Index and Improvement Measures of Emulsified Asphalt Cold Recycled Mixture. Materials. 2022. 15. 21. P. 7867. https://doi.org/10.3390/ma15217867
[13] Biswal D. R., Sahoo U. C., Dash S. R. Biswal D. R., Sahoo U. C., Dash S. R. Mechanical characteristics of cement stabilised granular lateritic soils for use as structural layer of pavement. Road Materials and Pavement Design. 2020. 21. 5. P. 1201 – 1223. https://doi.org/10.1080/14680629.2018.1511458
[14] Pitawala S., Sounthararajah A., Bodin D., Kodikara J. Advanced characterisation of flexural fatigue performance of foamed bitumen stabilised pavement materials. Construction and Building Materials. 2022. 341. P. 127881.
[15] Cheng H., Sun L., Yang R., Zhang Y., Liu L. Relating field moduli of asphalt mixture layer under vehicular loading and its dynamic moduli under laboratory loading. Transportation Research Record. 2022. 2676. 2. P. 567 – 579. https://doi.org/10.1177/03611981211044453
[16] Li Q., Lee H. J., Kim T. W. A simple fatigue performance model of asphalt mixtures based on fracture energy. Construction and Building Materials. 2012. 27. 1. P. 605 – 611.https://doi.org/10.1016/j.conbuildmat.2011.07.001
[17] Zhang J., Ma T., Zhang Y., Wang A. A fatigue life prediction method of cement-stabilized aggregates considering the effect of stress state. Construction and Building Materials. 2023. 394. P. 132282.https://doi.org/10.1016/j.conbuildmat.2023.132282
[18] Kadyrov G.F., Simchuk E.N., Tiraturyan A.N. Comparative testing of asphalt concrete for fatigue life using various modern laboratory methods. Scientific journal of construction and architecture. 2023. 4 (72). P. 121 К 132. DOI 10.36622/VSTU.2023.72.4.010.
[19] Seif M., Molayem M. Estimation of fatigue life of asphalt mixtures in terms of fatigue life of asphalt binders using the rate of dissipated energy change approach. Journal of Materials in Civil Engineering. 2022. 34. 8. P. 04022185. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004334
[20] Li H., Luo X., Gu Z., Chen Q., Zhang Y. Predicting crack growth of paving materials under indirect tensile fatigue loads. International Journal of Fatigue. 2023. 175. P. 107818. https://doi.org/10.1016/j.ijfatigue.2023.107818
[21] Kim J., Koh C. Kim J., Koh C. Development of a predictive system for estimating fatigue life of asphalt mixtures using the indirect tensile test. Journal of transportation engineering. 2012. 138. 12. P. 1530 – 1540.
[2] Kim M., Mohammad L.N., Jordan T. Fatigue performance of asphalt mixture containing recycled materials and warm-mix technologies under accelerated loading and four point bending beam test. Journal of cleaner production. 2018. 192. P. 656 – 664. https://doi.org/10.1016/j.jclepro.2018.04.070
[3] Varma R., Atul Narayan S.P., Murali Krishnan J. Quantification of viscous and fatigue dissipation of asphalt concrete in four-point bending tests. Journal of Materials in Civil Engineering. 2019. 31 (12). P. 04019285. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002938.
[4] Colpo G. B., Brito L. A. T., Doering D., Mocelin D. M., Hilgert A. P., Johnsto M., Ceratti J. A. P. Fatigue behavior study of a dense graded HMA using the four point bending beam test aided by an in-situ instrumentation at BR-116/RS, Brazil. Transportes. 2020. 28 (2). P. 14 – 28. https://doi.org/10.14295/transportes.v28i2.1907
[5] Cheng H., Liu L., Sun L. Bridging the gap between laboratory and field moduli of asphalt layer for pavement design and assessment: A comprehensive loading frequency-based approach. Frontiers of structural and civil engineering. 2022. 16 (3). P. 267 – 280. https://doi.org/10.1007/s11709-022-0811-7
[6] Ishaq M. A., Giustozzi F. Correlation between rheological fatigue tests on bitumen and various cracking tests on asphalt mixtures. Materials. 14 (24). P. 7839.
[7] Bennert T., Haas E., Wass E. Indirect tensile test (IDT) to determine asphalt mixture performance indicators during quality control testing in New Jersey. Transportation research record. 2018. 2672. 28. P. 394 – 403. https://doi.org/10.1177/0361198118793276
[8] Chen H., Alamnie M. M., Barbieri D. M., Zhang X., Liu G., Hoff I. Comparative study of indirect tensile test and uniaxial compression test on asphalt mixtures: Dynamic modulus and stress-strain state. Construction and Building Materials. 2023. 366. P. 130187https://doi.org/10.1016/j.conbuildmat.2022.130187
[9] Yin F., Garita J., Taylor A., West R. Refining the indirect tensile (IDT) Nflex factor test to evaluate cracking resistance of asphalt mixtures for mix design and quality assurance. Construction and Building Materials. 2018. 172. P. 396 – 405. https://doi.org/10.1016/j.conbuildmat.2018.03.251.
[10] Safi F.R., Al-Qadi I.L., Hossain K., Ozer H. Total recycled asphalt mixes: Characteristics and field performance. Transportation research record. 2019. 2673. 12. P. 149 – 162. https://doi.org/10.1177/0361198119849915
[11] Yi X., Chen H., Wang H., Shi C., Yang J. The feasibility of using epoxy asphalt to recycle a mixture containing 100% reclaimed asphalt pavement (RAP). Construction and Building Materials. 2022. 319. P. 126122. https://doi.org/10.1016/j.conbuildmat.2021.126122
[12] Yu X., Han Z., Cai Y., Liu L., Sun L. Study on Low-Temperature Index and Improvement Measures of Emulsified Asphalt Cold Recycled Mixture. Materials. 2022. 15. 21. P. 7867. https://doi.org/10.3390/ma15217867
[13] Biswal D. R., Sahoo U. C., Dash S. R. Biswal D. R., Sahoo U. C., Dash S. R. Mechanical characteristics of cement stabilised granular lateritic soils for use as structural layer of pavement. Road Materials and Pavement Design. 2020. 21. 5. P. 1201 – 1223. https://doi.org/10.1080/14680629.2018.1511458
[14] Pitawala S., Sounthararajah A., Bodin D., Kodikara J. Advanced characterisation of flexural fatigue performance of foamed bitumen stabilised pavement materials. Construction and Building Materials. 2022. 341. P. 127881.
[15] Cheng H., Sun L., Yang R., Zhang Y., Liu L. Relating field moduli of asphalt mixture layer under vehicular loading and its dynamic moduli under laboratory loading. Transportation Research Record. 2022. 2676. 2. P. 567 – 579. https://doi.org/10.1177/03611981211044453
[16] Li Q., Lee H. J., Kim T. W. A simple fatigue performance model of asphalt mixtures based on fracture energy. Construction and Building Materials. 2012. 27. 1. P. 605 – 611.https://doi.org/10.1016/j.conbuildmat.2011.07.001
[17] Zhang J., Ma T., Zhang Y., Wang A. A fatigue life prediction method of cement-stabilized aggregates considering the effect of stress state. Construction and Building Materials. 2023. 394. P. 132282.https://doi.org/10.1016/j.conbuildmat.2023.132282
[18] Kadyrov G.F., Simchuk E.N., Tiraturyan A.N. Comparative testing of asphalt concrete for fatigue life using various modern laboratory methods. Scientific journal of construction and architecture. 2023. 4 (72). P. 121 К 132. DOI 10.36622/VSTU.2023.72.4.010.
[19] Seif M., Molayem M. Estimation of fatigue life of asphalt mixtures in terms of fatigue life of asphalt binders using the rate of dissipated energy change approach. Journal of Materials in Civil Engineering. 2022. 34. 8. P. 04022185. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004334
[20] Li H., Luo X., Gu Z., Chen Q., Zhang Y. Predicting crack growth of paving materials under indirect tensile fatigue loads. International Journal of Fatigue. 2023. 175. P. 107818. https://doi.org/10.1016/j.ijfatigue.2023.107818
[21] Kim J., Koh C. Kim J., Koh C. Development of a predictive system for estimating fatigue life of asphalt mixtures using the indirect tensile test. Journal of transportation engineering. 2012. 138. 12. P. 1530 – 1540.
Tiraturyan A.N. Modelling of stress-strain state of asphalt concrete layers in pavements taking into account the results of laboratory four-point bending tests. Construction Materials and Products. 2024. 7 (4). 5. https://doi.org/10.58224/2618-7183-2024-7-4-5