The development of new types of environmentally friendly and cost-effective building materials is currently a relevant topic and is actively developing throughout the world. In modern construction materials science, the most popular direction is the development of new concrete compositions using waste of various origins. The objective of this study is to develop new compositions of foam concrete using local waste from the fuel and energy complex and plant natural fibers. To determine the optimal amount of the modifying additive fly ash (FA), 7 experimental concrete compositions with different percentages of cement replacement by FA were made. The content was established as optimal. Foam concrete with 15% FA has the lowest density of 1075 kg/m3 and a minimum thermal conductivity coefficient of 0.248 W/m × °C, as well as increases in compressive and bending strength of 23.3% and 21.7%, respectively. The effect of coconut fiber (CF) was assessed on the composition of foam concrete modified with the optimal amount of FA 15%. The optimal dosage of CF was 0.6%. As a result of FA modification and CF dispersed reinforcement, a complex effect was obtained. The increase in compressive and bending strength was 30.14% and 72.83%, respectively, compared to conventional foam concrete. The density and thermal conductivity coefficient decreased by 9.8% and 8.34%, respectively. The results obtained during the experimental studies prove the effectiveness of the proposed formulation solutions and allow obtaining an energy-efficient foam concrete composite with improved characteristics.
[1] Chen B., Liu B., Yang L., Zaland S., Ye H. Solidification of heavy metal in municipal solid waste incineration fly ash and performance evolution of alkali-activated foam concrete. Process Safety and Environmental Protection. 2024. 190. P. 850 – 862.
[2] Stel’makh S.A., Beskopylny A.N., Shcherban’ E.M., Mavzolevskii D.V., Drukarenko S.P., Chernil’nik A.A., Elshaeva D.M., Shilov A.A. Influence of Corn Cob Ash Additive on the Structure and Properties of Cement Concrete. Construction Materials and Products. 2024. 7 (3). 2. DOI: 10.58224/2618-7183-2024-7-3-2
[3] Fediuk R., Amran M., Klyuev S., Klyuev A. Increasing the performance of a fiber-reinforced concrete for protective facilities. Fibers. 2021. 9 (11). 64.
[4] Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Zolotareva S., Shchekina N., Shapovalova A., Sabitov L. Phase formation of mortar using technogenic fibrous materials. Case Studies in Construction Materials. 2022. V. 16. P. e01099.
[5] Stel’makh S.A., Shcherban’ E.M., Beskopylny A.N., Mailyan L.R., Meskhi B., Shilov A.A., Mailyan A.L., Zakieva N.I., Chernil’nik A., El’shaeva D. Structural Formation and Properties of Eco-Friendly Foam Concrete Modified with Coal Dust. Journal of Composites Science. 2023. 7. P. 519.
[6] Lawania K., Sarker P., Biswas W. Global Warming Implications of the Use of By-Products and Recycled Materials in Western Australia’s Housing Sector. Materials. 2015. 8. P. 6909 – 6925.
[7] Meskhi B., Beskopylny A.N., Stel’makh S.A., Shcherban’ E.M., Mailyan L.R., Beskopylny N., Chernil’nik A., El’shaeva D. Insulation Foam Concrete Nanomodified with Microsilica and Reinforced with Polypropylene Fiber for the Improvement of Characteristics. Polymers. 2022. 14. P. 4401.
[8] Boros A., Erdei G., Korim T. Development of Alkali Activated Inorganic Foams Based on Construction and Demolition Wastes for Thermal Insulation Applications. Materials. 2023. 16. P. 4065.
[9] Kaptan K., Cunha S., Aguiar J. A Review of the Utilization of Recycled Powder from Concrete Waste as a Cement Partial Replacement in Cement-Based Materials: Fundamental Properties and Activation Methods. Applied Sciences. 2024. 14. P. 9775.
[10] Dong Y., Wang Y., Zhou Z., Fan H. Study on the Preparation and Performance of Lightweight Wallboards from MSWIBA Foam Concrete. Materials. 2024. 17. P. 4402.
[11] Wie Y.M., Lee K.G., Lee K.H. Characteristics of Circulating Fluidized Bed Combustion (CFBC) Ash as Carbon Dioxide Storage Medium and Development of Construction Materials by Recycling Carbonated Ash. Materials. 2024. 17. P. 4359.
[12] Lermen R.T., Favaretto P., Silva R.d.A., Hidalgo G.E.N., Tubino R.M.C., Tiecher F. Effect of Additives, Cement Type, and Foam Amount on the Properties of Foamed Concrete Developed with Civil Construction Waste. Applied Sciences. 2019. 9. P. 2998.
[13] Şimşek O., Ünal M.T., Gökçe H.S. Performance of foam concrete developed from construction and demolition waste. Materials Today Sustainability. 2024. 27. P. 100822.
[14] Bumanis G., Zorica J., Bajare D. Properties of Foamed Lightweight High-Performance Phosphogypsum-Based Ternary System Binder. Applied Sciences. 2020. 10. P. 6222.
[15] Song Q., Zou Y., Zhang P., Xu S., Yang Y., Bao J., Xue S., Liu J., Gao S., Lin L. Novel high-efficiency solid particle foam stabilizer: Effects of modified fly ash on foam properties and foam concrete. Cement and Concrete Composites. 2025. 155. P. 105818.
[16] Klyuev S., Klyuev A., Fediuk R., Ageeva M., Fomina E., Amran M., Murali G. Fresh and mechanical properties of low-cement mortars for 3D printing. Construction and Building Materials. 2022. № 338. P. 127644. DOI:10.1016/j.conbuildmat.2022.127644
[17] Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Sabitov L., Radaykin O., Anciferov S., Kikalishvili D., de Azevedo Afonso R.G., Vatin N. Technogenic fiber wastes for optimizing concrete. Materials. 2022. V. 15(14). P. 5058.
[18] Amran M., Fediuk R., Klyuev S., Qader D.N. Sustainable development of basalt fiber-reinforced high-strength eco-friendly concrete with a modified composite binder. Case Studies in Construction Materials. 2022. 17. e01550.
[19] Mydin M.A.O., Abdullah M.M.A.B., Mohd Nawi M.N., Yahya Z., Sofri L.A., Baltatu M.S., Sandu A.V., Vizureanu P. Influence of Polyformaldehyde Monofilament Fiber on the Engineering Properties of Foamed Concrete. Materials. 2022. 15. P. 8984.
[20] Chen L., Li P., Guo W., Wang R., Zhang D., Gao M., Peng C. Experimental Investigation of the Dynamic Mechanical Properties of Polypropylene-Fiber-Reinforced Foamed Concrete at High Temperatures. Polymers. 2023. 15. P. 2544.
[21] Beskopylny A.N., Shcherban’ E.M., Stel’makh S.A., Mailyan L.R., Meskhi B., Varavka V. Chernil’nik A., Pogrebnyak A. Improved Fly Ash Based Structural Foam Concrete with Polypropylene Fiber. Journal of Composites Science. 2023. 7. P. 76.
[22] Shi X., Ning B., Na F., Zhao W., Zhang C. Study on properties of re-dispersible latex powder and polypropylene fiber-reinforced lightweight foam concrete. Journal of Building Engineering. 2024. 95. P. 110156.
[23] Walbrück K., Maeting F., Witzleben S., Stephan D. Natural Fiber-Stabilized Geopolymer Foams—A Review. Materials. 2020. 13. P. 3198.
[24] Volokitina I., Kolesnikov A., Fediuk R., Klyuev S., Sabitov L., Volokitin A., Zhuniskaliyev T., Kelamanov B., Yessengaliev D., Yerzhanov A., Kolesnikova O. Study of the Properties of Antifriction Rings under Severe Plastic Deformation. Materials. 2022. 15(7). 2584.
[25] Mohamad A., Khadraoui F., Chateigner D., Boutouil M. Influence of Porous Structure of Non-Autoclaved Bio-Based Foamed Concrete on Mechanical Strength. Buildings. 2023. 13. P. 2261.
[26] Beskopylny A.N., Shcherban’ E.M., Stel’makh S.A., Mailyan L.R., Meskhi B., Evtushenko A., El’shaeva D., Chernil’nik A. Improving the Physical and Mechanical Characteristics of Modified Aerated Concrete by Reinforcing with Plant Fibers. Fibers. 2023. 11. P. 33.
[27] Shcherban’ E.M., Stel’makh S.A., Beskopylny A.N., Mailyan L.R., Meskhi B., Shilov A.A., Chernil’nik A., Özkılıç Y.O., Aksoylu C. Normal-Weight Concrete with Improved Stress–Strain Characteristics Reinforced with Dispersed Coconut Fibers. Applied Sciences. 2022. 12. P. 11734.
[28] Klyuev A.V., Kashapov N.F., Klyuev S.V., Lesovik R.V., Ageeva M.S., Fomina E.V., Ayubov N.A. Development of alkali-activated binders based on technogenic fibrous materials. Construction Materials and Products. 2023. 6 (1). P. 60 – 73. https://doi.org/10.58224/2618-7183-2023-6-1-60-73
[29] Xu R., He T., Da Y., Liu Y., Li J., Chen C. Utilizing wood fiber produced with wood waste to reinforce autoclaved aerated concrete. Construction and Building Materials. 2019. 208. P. 242 – 249.
[30] Madhwani H., Sathyan D., Mini K.M. Study on durability and hardened state properties of sugarcane bagasse fiber reinforced foam concrete. Materials Today: Proceedings. 2021. 46 (10). P. 4782 – 4787.
[31] Klyuev A.V., Kashapov N.F., Klyuev S.V., Zolotareva S.V., Shchekina N.A., Shorstova E.S., Lesovik R.V., Ayubov N.A. Experimental studies of the processes of structure formation of composite mixtures with technogenic mechanoactivated silica component. Construction Materials and Products. 2023. 6 (2). P. 5 – 18. https://doi.org/10.58224/2618-7183-2023-6-2-5-18
[32] Wang X., Jin Y., Ma Q., Li X. Performance and mechanism analysis of natural fiber-reinforced foamed concrete. Case Studies in Construction Materials. 2024. 21. P. e03476.
[33] Othuman Mydin M.A., Noordin N.Md., Utaberta N., Mohd Yunos M.Y., Segeranazan S. Physical properties of foamed concrete incorporating coconut fibre. Science and Engineering. 2016. 78 (5). P. 99 – 105.
[34] Zamzani N.M., Othuman Mydin Md.A., Ghani A.N.A. Experimental investigation on engineering properties of lightweight foamed concrete (LFC) with coconut fiber addition. MATEC Web of Conferences. 2018. 250 (17). P. 05005.
[35] Klyuev S.V., Kashapov N.F., Radaykin O.V., Sabitov L.S., Klyuev A.V., Shchekina N.A. Reliability coefficient for fibreconcrete material. Construction Materials and Products. 2022. 5 (2). P. 51 – 58. https://doi.org/10.58224/2618-7183-2022-5-2-51-58
[36] Zhang S., Qi X., Guo S., Zhang L., Ren J. A systematic research on foamed concrete: The effects of foam content, fly ash, slag, silica fume and water-to-binder ratio. Construction and Building Materials. 2022. 339. P. 127683.
[37] Lu X., Wang J., Wang J., Tan H. Effect of hydroxypropyl methylcellulose as foam stabilizers on the stability of foam and properties of foamed concrete. Construction and Building Materials. 2024. 413. P. 134906.
[38] Shill S.K., Garcez E.O., Al-Deen S., Subhani M. Influence of Foam Content and Concentration on the Physical and Mechanical Properties of Foam Concrete. Applied Sciences. 2024. 14. P. 8385.
[39] Xian G., Liu Z., Wang Z., Zhou X. Study on the Performance and Mechanisms of High-Performance Foamed Concrete. Materials. 2022. 15. P. 7894.
[40] Bat-Erdene P.-E., Pareek S., Koenders E., Mankel C., Löher M., Xiao P. Evaluation of the Thermal Performance of Fly Ash Foam Concrete Containing Phase Change Materials (PCMs). Buildings. 2023. 13. P. 2481.
[41] Shcherban’ E.M., Beskopylny A.N., Stel’makh S.A., Mailyan L.R., Shilov A.A., Nguyen Quang Hiep, Yamin Song, Chernil’nik A.A., Elshaeva D.M. Study of thermophysical characteristics of variatropic concretes. Construction Materials and Products. 2024. 7 (4). P. 2. DOI: 10.58224/2618-7183-2024-7-4-2.
[42] Pozevalkin V.V., Polyakov A.N. Implementation of a Digital Model of Thermal Characteristics Based on the Temperature Field. Advanced Engineering Research (Rostov-on-Don). 2024. 24 (2). P. 178 – 189.
[43] She W., Du Y., Zhao G., Feng P., Zhang Y., Cao X. Influence of coarse fly ash on the performance of foam concrete and its application in high-speed railway roadbeds. Construction and Building Materials. 2018. 170. P. 153 – 166.
[44] Yuan H., Ge Z., Sun R., Xu X., Lu Y., Ling Y., Zhang H. Drying shrinkage, durability and microstructure of foamed concrete containing high volume lime mud-fly ash. Construction and Building Materials. 2022. 327. P. 126990.
[45] Satheesh Kumar S., Murugesan R., Sivaraja M., Athijayamani A. Innovative Eco-Friendly Concrete Utilizing Coconut Shell Fibers and Coir Pith Ash for Sustainable Development. Sustainability. 2024. 16. P. 5316.
[46] Martinelli F.R.B., Ribeiro F.R.C., Marvila M.T., Monteiro S.N., Filho F.d.C.G., Azevedo A.R.G.d. A Review of the Use of Coconut Fiber in Cement Composites. Polymers. 2023. 15. P. 1309.
[47] Jierula A., Li H., Chen Y., Wu C., Wu X., Yin H. Study on the Influence of Density and Water–Cement Ratio on the Cement Utilization, Fluidity, Mechanical Properties, and Water Absorption of Foam Concrete. Buildings. 2024. 14. P. 3550.
[48] Morgun L.V. Important Practical Conditions for Getting the High-Quality Foam Concretes. Modern Trends in Construction, Urban and Territorial Planning. 2024. 3 (3). P. 33 – 39.
[49] Ferrández D., Zaragoza-Benzal A., Pastor Lamberto R., Santos P., Michalak J. Optimizing Masonry Mortar: Experimental Insights into Physico-Mechanical Properties Using Recycled Aggregates and Natural Fibers. Applied Sciences. 2024. 14. P. 6226.
[50] Zaki A., Aprilia N.C., Rosyidi S.A.P., Mahbubi K. Evaluation of Coconut Fiber in Corroded Reinforced Self-Healing Concrete Using NDT Methods. NDT. 2024. 2. P. 214 – 227.
[51] Ali B., Fahad M., Ullah S., Ahmed H., Alyousef R., Deifalla A. Development of Ductile and Durable High Strength Concrete (HSC) through Interactive Incorporation of Coir Waste and Silica Fume. Materials. 2022. 15. P. 2616
[52] Ahmad W., Farooq S.H., Usman M., Khan M., Ahmad A., Aslam F., Yousef R.A., Abduljabbar H.A., Sufian M. Effect of Coconut Fiber Length and Content on Properties of High Strength Concrete. Materials. 2020. 13. P. 1075.
[53] Hardjasaputra H., Ng G., Urgessa G., Lesmana G., Sidharta S. Performance of Lightweight Natural-Fiber Reinforced Concrete. MATEC Web of Conferences. 2017. 138. P. 01009.
[54] Nandiyanto A., Hotimah A.P., Daffa M.N., Maulida R., Ragadhita R., Nadhira S.F., Anggraeni S. The effect of the addition of coconut fibers and coconut shells on the mechanical characteristics of porous concrete. Journal of Engineering Science and Technology. 2022. 17 (3). P. 1755 – 1763.
[55] Jamshaid H., Ali H., Mishra R.K., Nazari S., Chandan V. Durability and Accelerated Ageing of Natural Fibers in Concrete as a Sustainable Construction Material. Materials. 2023. 16. P. 6905.
[56] Zainal S.M.I.S., Mattius D., Baba Z., Rizalman A.N., Hejazi F. Improving the Performance of Lightweight Crumb Rubber Mortar Using Synthetic, Natural, and Hybrid Fiber Reinforcements. Fibers. 2023. 11. P. 9.
[57] Ahmad J., Majdi A., Al-Fakih A., Deifalla A.F., Althoey F., El Ouni M.H., El-Shorbagy M.A. Mechanical and Durability Performance of Coconut Fiber Reinforced Concrete: A State-of-the-Art Review. Materials. 2022. 15. P. 3601.
[58] Sekar A., Kandasamy G. Study on Durability Properties of Coconut Shell Concrete with Coconut Fiber. Buildings. 2019. 9. P. 107.
[59] Sekar A.; Kandasamy G. Optimization of Coconut Fiber in Coconut Shell Concrete and Its Mechanical and Bond Properties. Materials. 2018. 11. P 1726.
[60] Khalife E., Sabouri M., Kaveh M., Szymanek M. Recent Advances in the Application of Agricultural Waste in Construction. Applied Sciences. 2024. 14. P. 2355.
[61] Puzatova A.V., Dmitrieva M.A., Tovpinets A.О., Leitsin V.N. Study of Structural Defects Evolution in Fine-Grained Concrete Using Computed Tomography Methods. Advanced Engineering Research (Rostov-on-Don). 2024. 24 (3). P. 227 – 237.
[62] Fedchenko E.A., Gusarova L.V., Uskenbayeva A.R. Green building in the ESG agenda for sustainable development of Russia: conditions and trends. Construction Materials and Products. 2024. 7 (3). P. 9. DOI: 10.58224/2618-7183-2024-7-3-9.
[2] Stel’makh S.A., Beskopylny A.N., Shcherban’ E.M., Mavzolevskii D.V., Drukarenko S.P., Chernil’nik A.A., Elshaeva D.M., Shilov A.A. Influence of Corn Cob Ash Additive on the Structure and Properties of Cement Concrete. Construction Materials and Products. 2024. 7 (3). 2. DOI: 10.58224/2618-7183-2024-7-3-2
[3] Fediuk R., Amran M., Klyuev S., Klyuev A. Increasing the performance of a fiber-reinforced concrete for protective facilities. Fibers. 2021. 9 (11). 64.
[4] Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Zolotareva S., Shchekina N., Shapovalova A., Sabitov L. Phase formation of mortar using technogenic fibrous materials. Case Studies in Construction Materials. 2022. V. 16. P. e01099.
[5] Stel’makh S.A., Shcherban’ E.M., Beskopylny A.N., Mailyan L.R., Meskhi B., Shilov A.A., Mailyan A.L., Zakieva N.I., Chernil’nik A., El’shaeva D. Structural Formation and Properties of Eco-Friendly Foam Concrete Modified with Coal Dust. Journal of Composites Science. 2023. 7. P. 519.
[6] Lawania K., Sarker P., Biswas W. Global Warming Implications of the Use of By-Products and Recycled Materials in Western Australia’s Housing Sector. Materials. 2015. 8. P. 6909 – 6925.
[7] Meskhi B., Beskopylny A.N., Stel’makh S.A., Shcherban’ E.M., Mailyan L.R., Beskopylny N., Chernil’nik A., El’shaeva D. Insulation Foam Concrete Nanomodified with Microsilica and Reinforced with Polypropylene Fiber for the Improvement of Characteristics. Polymers. 2022. 14. P. 4401.
[8] Boros A., Erdei G., Korim T. Development of Alkali Activated Inorganic Foams Based on Construction and Demolition Wastes for Thermal Insulation Applications. Materials. 2023. 16. P. 4065.
[9] Kaptan K., Cunha S., Aguiar J. A Review of the Utilization of Recycled Powder from Concrete Waste as a Cement Partial Replacement in Cement-Based Materials: Fundamental Properties and Activation Methods. Applied Sciences. 2024. 14. P. 9775.
[10] Dong Y., Wang Y., Zhou Z., Fan H. Study on the Preparation and Performance of Lightweight Wallboards from MSWIBA Foam Concrete. Materials. 2024. 17. P. 4402.
[11] Wie Y.M., Lee K.G., Lee K.H. Characteristics of Circulating Fluidized Bed Combustion (CFBC) Ash as Carbon Dioxide Storage Medium and Development of Construction Materials by Recycling Carbonated Ash. Materials. 2024. 17. P. 4359.
[12] Lermen R.T., Favaretto P., Silva R.d.A., Hidalgo G.E.N., Tubino R.M.C., Tiecher F. Effect of Additives, Cement Type, and Foam Amount on the Properties of Foamed Concrete Developed with Civil Construction Waste. Applied Sciences. 2019. 9. P. 2998.
[13] Şimşek O., Ünal M.T., Gökçe H.S. Performance of foam concrete developed from construction and demolition waste. Materials Today Sustainability. 2024. 27. P. 100822.
[14] Bumanis G., Zorica J., Bajare D. Properties of Foamed Lightweight High-Performance Phosphogypsum-Based Ternary System Binder. Applied Sciences. 2020. 10. P. 6222.
[15] Song Q., Zou Y., Zhang P., Xu S., Yang Y., Bao J., Xue S., Liu J., Gao S., Lin L. Novel high-efficiency solid particle foam stabilizer: Effects of modified fly ash on foam properties and foam concrete. Cement and Concrete Composites. 2025. 155. P. 105818.
[16] Klyuev S., Klyuev A., Fediuk R., Ageeva M., Fomina E., Amran M., Murali G. Fresh and mechanical properties of low-cement mortars for 3D printing. Construction and Building Materials. 2022. № 338. P. 127644. DOI:10.1016/j.conbuildmat.2022.127644
[17] Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Sabitov L., Radaykin O., Anciferov S., Kikalishvili D., de Azevedo Afonso R.G., Vatin N. Technogenic fiber wastes for optimizing concrete. Materials. 2022. V. 15(14). P. 5058.
[18] Amran M., Fediuk R., Klyuev S., Qader D.N. Sustainable development of basalt fiber-reinforced high-strength eco-friendly concrete with a modified composite binder. Case Studies in Construction Materials. 2022. 17. e01550.
[19] Mydin M.A.O., Abdullah M.M.A.B., Mohd Nawi M.N., Yahya Z., Sofri L.A., Baltatu M.S., Sandu A.V., Vizureanu P. Influence of Polyformaldehyde Monofilament Fiber on the Engineering Properties of Foamed Concrete. Materials. 2022. 15. P. 8984.
[20] Chen L., Li P., Guo W., Wang R., Zhang D., Gao M., Peng C. Experimental Investigation of the Dynamic Mechanical Properties of Polypropylene-Fiber-Reinforced Foamed Concrete at High Temperatures. Polymers. 2023. 15. P. 2544.
[21] Beskopylny A.N., Shcherban’ E.M., Stel’makh S.A., Mailyan L.R., Meskhi B., Varavka V. Chernil’nik A., Pogrebnyak A. Improved Fly Ash Based Structural Foam Concrete with Polypropylene Fiber. Journal of Composites Science. 2023. 7. P. 76.
[22] Shi X., Ning B., Na F., Zhao W., Zhang C. Study on properties of re-dispersible latex powder and polypropylene fiber-reinforced lightweight foam concrete. Journal of Building Engineering. 2024. 95. P. 110156.
[23] Walbrück K., Maeting F., Witzleben S., Stephan D. Natural Fiber-Stabilized Geopolymer Foams—A Review. Materials. 2020. 13. P. 3198.
[24] Volokitina I., Kolesnikov A., Fediuk R., Klyuev S., Sabitov L., Volokitin A., Zhuniskaliyev T., Kelamanov B., Yessengaliev D., Yerzhanov A., Kolesnikova O. Study of the Properties of Antifriction Rings under Severe Plastic Deformation. Materials. 2022. 15(7). 2584.
[25] Mohamad A., Khadraoui F., Chateigner D., Boutouil M. Influence of Porous Structure of Non-Autoclaved Bio-Based Foamed Concrete on Mechanical Strength. Buildings. 2023. 13. P. 2261.
[26] Beskopylny A.N., Shcherban’ E.M., Stel’makh S.A., Mailyan L.R., Meskhi B., Evtushenko A., El’shaeva D., Chernil’nik A. Improving the Physical and Mechanical Characteristics of Modified Aerated Concrete by Reinforcing with Plant Fibers. Fibers. 2023. 11. P. 33.
[27] Shcherban’ E.M., Stel’makh S.A., Beskopylny A.N., Mailyan L.R., Meskhi B., Shilov A.A., Chernil’nik A., Özkılıç Y.O., Aksoylu C. Normal-Weight Concrete with Improved Stress–Strain Characteristics Reinforced with Dispersed Coconut Fibers. Applied Sciences. 2022. 12. P. 11734.
[28] Klyuev A.V., Kashapov N.F., Klyuev S.V., Lesovik R.V., Ageeva M.S., Fomina E.V., Ayubov N.A. Development of alkali-activated binders based on technogenic fibrous materials. Construction Materials and Products. 2023. 6 (1). P. 60 – 73. https://doi.org/10.58224/2618-7183-2023-6-1-60-73
[29] Xu R., He T., Da Y., Liu Y., Li J., Chen C. Utilizing wood fiber produced with wood waste to reinforce autoclaved aerated concrete. Construction and Building Materials. 2019. 208. P. 242 – 249.
[30] Madhwani H., Sathyan D., Mini K.M. Study on durability and hardened state properties of sugarcane bagasse fiber reinforced foam concrete. Materials Today: Proceedings. 2021. 46 (10). P. 4782 – 4787.
[31] Klyuev A.V., Kashapov N.F., Klyuev S.V., Zolotareva S.V., Shchekina N.A., Shorstova E.S., Lesovik R.V., Ayubov N.A. Experimental studies of the processes of structure formation of composite mixtures with technogenic mechanoactivated silica component. Construction Materials and Products. 2023. 6 (2). P. 5 – 18. https://doi.org/10.58224/2618-7183-2023-6-2-5-18
[32] Wang X., Jin Y., Ma Q., Li X. Performance and mechanism analysis of natural fiber-reinforced foamed concrete. Case Studies in Construction Materials. 2024. 21. P. e03476.
[33] Othuman Mydin M.A., Noordin N.Md., Utaberta N., Mohd Yunos M.Y., Segeranazan S. Physical properties of foamed concrete incorporating coconut fibre. Science and Engineering. 2016. 78 (5). P. 99 – 105.
[34] Zamzani N.M., Othuman Mydin Md.A., Ghani A.N.A. Experimental investigation on engineering properties of lightweight foamed concrete (LFC) with coconut fiber addition. MATEC Web of Conferences. 2018. 250 (17). P. 05005.
[35] Klyuev S.V., Kashapov N.F., Radaykin O.V., Sabitov L.S., Klyuev A.V., Shchekina N.A. Reliability coefficient for fibreconcrete material. Construction Materials and Products. 2022. 5 (2). P. 51 – 58. https://doi.org/10.58224/2618-7183-2022-5-2-51-58
[36] Zhang S., Qi X., Guo S., Zhang L., Ren J. A systematic research on foamed concrete: The effects of foam content, fly ash, slag, silica fume and water-to-binder ratio. Construction and Building Materials. 2022. 339. P. 127683.
[37] Lu X., Wang J., Wang J., Tan H. Effect of hydroxypropyl methylcellulose as foam stabilizers on the stability of foam and properties of foamed concrete. Construction and Building Materials. 2024. 413. P. 134906.
[38] Shill S.K., Garcez E.O., Al-Deen S., Subhani M. Influence of Foam Content and Concentration on the Physical and Mechanical Properties of Foam Concrete. Applied Sciences. 2024. 14. P. 8385.
[39] Xian G., Liu Z., Wang Z., Zhou X. Study on the Performance and Mechanisms of High-Performance Foamed Concrete. Materials. 2022. 15. P. 7894.
[40] Bat-Erdene P.-E., Pareek S., Koenders E., Mankel C., Löher M., Xiao P. Evaluation of the Thermal Performance of Fly Ash Foam Concrete Containing Phase Change Materials (PCMs). Buildings. 2023. 13. P. 2481.
[41] Shcherban’ E.M., Beskopylny A.N., Stel’makh S.A., Mailyan L.R., Shilov A.A., Nguyen Quang Hiep, Yamin Song, Chernil’nik A.A., Elshaeva D.M. Study of thermophysical characteristics of variatropic concretes. Construction Materials and Products. 2024. 7 (4). P. 2. DOI: 10.58224/2618-7183-2024-7-4-2.
[42] Pozevalkin V.V., Polyakov A.N. Implementation of a Digital Model of Thermal Characteristics Based on the Temperature Field. Advanced Engineering Research (Rostov-on-Don). 2024. 24 (2). P. 178 – 189.
[43] She W., Du Y., Zhao G., Feng P., Zhang Y., Cao X. Influence of coarse fly ash on the performance of foam concrete and its application in high-speed railway roadbeds. Construction and Building Materials. 2018. 170. P. 153 – 166.
[44] Yuan H., Ge Z., Sun R., Xu X., Lu Y., Ling Y., Zhang H. Drying shrinkage, durability and microstructure of foamed concrete containing high volume lime mud-fly ash. Construction and Building Materials. 2022. 327. P. 126990.
[45] Satheesh Kumar S., Murugesan R., Sivaraja M., Athijayamani A. Innovative Eco-Friendly Concrete Utilizing Coconut Shell Fibers and Coir Pith Ash for Sustainable Development. Sustainability. 2024. 16. P. 5316.
[46] Martinelli F.R.B., Ribeiro F.R.C., Marvila M.T., Monteiro S.N., Filho F.d.C.G., Azevedo A.R.G.d. A Review of the Use of Coconut Fiber in Cement Composites. Polymers. 2023. 15. P. 1309.
[47] Jierula A., Li H., Chen Y., Wu C., Wu X., Yin H. Study on the Influence of Density and Water–Cement Ratio on the Cement Utilization, Fluidity, Mechanical Properties, and Water Absorption of Foam Concrete. Buildings. 2024. 14. P. 3550.
[48] Morgun L.V. Important Practical Conditions for Getting the High-Quality Foam Concretes. Modern Trends in Construction, Urban and Territorial Planning. 2024. 3 (3). P. 33 – 39.
[49] Ferrández D., Zaragoza-Benzal A., Pastor Lamberto R., Santos P., Michalak J. Optimizing Masonry Mortar: Experimental Insights into Physico-Mechanical Properties Using Recycled Aggregates and Natural Fibers. Applied Sciences. 2024. 14. P. 6226.
[50] Zaki A., Aprilia N.C., Rosyidi S.A.P., Mahbubi K. Evaluation of Coconut Fiber in Corroded Reinforced Self-Healing Concrete Using NDT Methods. NDT. 2024. 2. P. 214 – 227.
[51] Ali B., Fahad M., Ullah S., Ahmed H., Alyousef R., Deifalla A. Development of Ductile and Durable High Strength Concrete (HSC) through Interactive Incorporation of Coir Waste and Silica Fume. Materials. 2022. 15. P. 2616
[52] Ahmad W., Farooq S.H., Usman M., Khan M., Ahmad A., Aslam F., Yousef R.A., Abduljabbar H.A., Sufian M. Effect of Coconut Fiber Length and Content on Properties of High Strength Concrete. Materials. 2020. 13. P. 1075.
[53] Hardjasaputra H., Ng G., Urgessa G., Lesmana G., Sidharta S. Performance of Lightweight Natural-Fiber Reinforced Concrete. MATEC Web of Conferences. 2017. 138. P. 01009.
[54] Nandiyanto A., Hotimah A.P., Daffa M.N., Maulida R., Ragadhita R., Nadhira S.F., Anggraeni S. The effect of the addition of coconut fibers and coconut shells on the mechanical characteristics of porous concrete. Journal of Engineering Science and Technology. 2022. 17 (3). P. 1755 – 1763.
[55] Jamshaid H., Ali H., Mishra R.K., Nazari S., Chandan V. Durability and Accelerated Ageing of Natural Fibers in Concrete as a Sustainable Construction Material. Materials. 2023. 16. P. 6905.
[56] Zainal S.M.I.S., Mattius D., Baba Z., Rizalman A.N., Hejazi F. Improving the Performance of Lightweight Crumb Rubber Mortar Using Synthetic, Natural, and Hybrid Fiber Reinforcements. Fibers. 2023. 11. P. 9.
[57] Ahmad J., Majdi A., Al-Fakih A., Deifalla A.F., Althoey F., El Ouni M.H., El-Shorbagy M.A. Mechanical and Durability Performance of Coconut Fiber Reinforced Concrete: A State-of-the-Art Review. Materials. 2022. 15. P. 3601.
[58] Sekar A., Kandasamy G. Study on Durability Properties of Coconut Shell Concrete with Coconut Fiber. Buildings. 2019. 9. P. 107.
[59] Sekar A.; Kandasamy G. Optimization of Coconut Fiber in Coconut Shell Concrete and Its Mechanical and Bond Properties. Materials. 2018. 11. P 1726.
[60] Khalife E., Sabouri M., Kaveh M., Szymanek M. Recent Advances in the Application of Agricultural Waste in Construction. Applied Sciences. 2024. 14. P. 2355.
[61] Puzatova A.V., Dmitrieva M.A., Tovpinets A.О., Leitsin V.N. Study of Structural Defects Evolution in Fine-Grained Concrete Using Computed Tomography Methods. Advanced Engineering Research (Rostov-on-Don). 2024. 24 (3). P. 227 – 237.
[62] Fedchenko E.A., Gusarova L.V., Uskenbayeva A.R. Green building in the ESG agenda for sustainable development of Russia: conditions and trends. Construction Materials and Products. 2024. 7 (3). P. 9. DOI: 10.58224/2618-7183-2024-7-3-9.
Beskopylny A.N., Stel'makh S.A., Shcherban' E.M., Saidumov M.S., Abumuslimov A., Mezhidov D., Wang Z. Eco-Friendly Foam Concrete with Improved Physical and Mechanical Properties, Modified with Fly Ash and Reinforced with Coconut Fibers. Construction Materials and Products. 2025. 8 (1). 1. https://doi.org/10.58224/2618-7183-2025-8-1-1