Ключевые слова: aluminosilicate microspheres

Technology for the production of road bitumen modifier using aluminosilicate microspheres extracted from ash and slag energy waste

https://doi.org/10.58224/2618-7183-2023-6-6-3
Аннотация
The results of research on the development of technological solutions for the production of a new rubber-bitumen binder for asphalt concrete based on the use of industrial waste: used car tires, used car oil and microdispersed aluminosilicate spherical particles obtained from the processing of ash and slag waste (ASW) from thermal power plants are presented. The proposed technological solutions make it possible to obtain high-quality polymer additives for modifying the properties of road bitumen. The elements of novelty of the developed approach include the use, to obtain a granular modifier, of micro-sized hydrophobized aluminosilicate spheres, which are extracted as an additional product during the complex processing of ASW. The positive economic efficiency of technological solutions is ensured by the use of large rubber crumb (more than 8 mm) or rubber chips, their devulcanization together with hydrocarbon fractions of used engine oil and petroleum bitumen at a given temperature to form a gel-like mass, which is further subjected to mechanical grinding in a mill.
PDF

Study of the Influence of Hydrothermal Treatment Parameters on the Properties of Lightweight Silicate Bricks Using Aluminosilicate Microspheres and Substandard Clay Rocks

https://doi.org/10.58224/2618-7183-2023-6-5-4
Аннотация
This article investigates the influence of various parameters of hydrothermal treatment on the properties of lightweight silicate bricks obtained using substandard clay raw materials, construction lime and aluminosilicate microspheres. It was found that it is possible to obtain products with the required performance characteristics at a minimum hydrothermal treatment pressure of 0.2 MPa. With an increase in pressure to 0.4 MPa, it is possible to reduce the time of isothermal exposure while main-taining the required properties, which helps to reduce the energy intensity of production. The optimal amount of CaO depends on the specific parameters of hydrothermal treatment. So in order to achieve maximum strength indicators, the content of CaO is 10 wt. % at a pressure of 0.2 MPa and 15 wt. % at a pressure of 0.4 MPa, respectively. The addition of aluminosilicate microspheres makes it possible to significantly reduce the average density and obtain a lightweight silicate brick with this indicator from 930 to 1610 kg /m3. The rational time of isothermal exposure, ensuring the formation of a cementing compound of optimal composition, and as a result, obtaining a material with high physical and me-chanical properties at a pressure of 0.2 MPa is 8 hours, and at a pressure of 0.4 MPa is 6 hours. Math-ematical models are proposed for the selection and optimization of lightweight silicate brick compositions based on construction lime, substandard clay rocks and aluminosilicate microspheres.
PDF