Ключевые слова: композиционное вяжущее

МЕЛКОЗЕРНИСТЫЙ БЕТОН ПОВЫШЕННОЙ ПРОЧНОСТИ

https://doi.org/10.34031/2618-7183-2020-3-1-39-43
Аннотация
В статье рассматриваются возможности повышения прочностных характеристик мелкозернистых бетонов. Модифицирование составов и технологии производства мелкозернистых бетонов повы-шенной прочности возможно с применением природных и техногенных сырьевых материалов различного химического и минерального состава. Показана возможность повышения экономической целесообразности высокопрочных мелкозернистых бетонов с сохранением эксплуатационных характеристик за счет применения техногенных сырьевых материалов и отходов производства. Рассмотрены вопросы управления процессами формирования структуры и выявления потенциально стабильного состояния твердеющих композиций возможно на основе модификации и методов проектирования состава строительных объектов с улучшенными свойствами.
PDF

ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ СОЗДАНИЯ КОМПОЗИЦИОННОГО НАНОСТРУКТУРИРОВАННОГО ГИПСОВОГО ВЯЖУЩЕГО ПОВЫШЕННОЙ ЖАРОСТОЙКОСТИ

https://doi.org/10.34031/2618-7183-2019-2-4-5-13
Аннотация
Среди широкого спектра вяжущих продуктов строительного назначения, наибольший интерес проявляется к бесцементным вяжущим нового поколения, для которых свойственны уникальные или улучшенные эксплуатационные характеристики. Среди подобных вяжущих следует отметить относительно новый вид вяжущего – композиционное наноструктурированное гипсовое вяжущее (КНГВ) В рамках данной статьи рассмотрена и апробирована гипотеза о синергетическом эффекте в твердеющей системе, который реализуется при взаимодействии двух вяжущих систем принципиально разного механизма твердения: полимеризационно-поликонденсационный и гидратационный. Проведен ряд исследований, на основании которых представлены результаты, подтверждающие устойчивость КНГВ к воздействию высоких (до 1000 °С) температур по сравнению с традиционной гипсовой вяжущей системой. Установлено, что термостойкость КНГВ обоснована протеканием кристаллизационных процессов с участием кремнеземной составляющей, при применении наноструктурированного вяжущего в качестве активного минерального компонента, который, в свою очередь, характеризуется устойчивостью к воздействию повышенных температур. Как проявление синергетического эффекта, в процессе взаимодействия двух вяжущих компонентов происходит образование кристаллического продукта типа гидроксиэллестадита Ca5(SiO4)3(SO4)3(OH)2, размеры элементарных ячеек которого при перепадах температур в широком диапазоне практически не изменяются. Это свойство данной кристаллической фазы позволяет сохранить целостность сформировавшейся структуры композиционного вяжущего КНГВ.
PDF

АНАЛИЗ ФАКТОРОВ ПОВЫШЕНИЯ ПРОЧНОСТИ НЕАВТОКЛАВНОГО ГАЗОБЕТОНА

https://doi.org/10.34031/2618-7183-2018-1-1-59-68
Аннотация
Неавтоклавный газобетон является единственной реальной альтернативой газосиликату при организации его выпуска на базе региональных производств малой и средней мощности. Это будет способствовать улучшению конкурентной обстановки на рынке строительных материалов и оптимизации стоимости строительства. Особый интерес представляет возможность расширения области применения данного материала за счёт существенного повышения прочностных показателей, при сохранении его средней плотности в приемлемых, с точки зрения теплоизоляционных качеств, пределах – не более 1000…1100 кг/м3. При уровне прочности 10 МПа и выше, в сочетании с дисперсным армированием или применением традиционных неметаллических арматурных элементов, подобный газобетон может быть использован как лёгкий конструкционный материал для создания силовых элементов малоэтажных зданий, в том числе и в перспективных технологиях строительной печати; устройства распределяющих нагрузки поясов; несъёмной опалубки; пористого силового элемента, придающего жёсткость, заполнения тонкостенных трубчатых конструкций. В работе представлена оценка эффективности традиционных способов повышения прочности неавтоклавного газобетона. Предложены и опробованы новые решения по целенаправленному формированию строения порового пространства за счёт создания и использования газообразователя с нормированным газовыделением, позволяющего создавать поры заданного объёма. Залогом экономической эффективности предлагаемых решений является переход от традиционного портландцемента на композиционные вяжущие на его основе. Обоснованный выбор количества и состава минеральной добавки позволяет оптимизировать свойства вяжущего под особенности решаемой задачи и добиться минимизации расхода цемента и химических модификаторов, повышения скорости набора прочности и итоговых показателей неавтоклавного газобетона.
PDF