Hydraulic activity of crushing screenings of waste open-hearth slag

https://doi.org/10.58224//2618-7183-2024-7-3-3
Theoretically and experimentally studied the hydraulic activity of crushing screenings of waste open-hearth slag and methods for intensifying the hydration hardening of slag stone during operation. During the hardening of slag stone, three periods of pronounced syneresis with gel new formations strengthening the material were established at the ages of 28 – 60, 90 – 180 days and 1 – 2 years. The first period of syneresis, in contrast to the subsequent ones without changing the strength of the samples, is recorded by the linear shrinkage of the samples, the squeezing out of bound water and the increase in pH. The introduction of two percent of cement dust or lime into the crushing screenings of waste open-hearth slag leads to the strengthening of the slag stone at 28 and 90 days of age by 3 – 4 times. However, by the age of two years, the strength of the samples stabilizes. This fact indicates that the additions of cement dust or lime are not additional binders, but hardening accelerators.
[1] Bashkarev A., Bessonova V., Lazarev Y., Lozhechko V. Interfacial layers in mineral-bitumen composite and durability of asphalt concrete. Construction of Unique Buildings and Structures. 2023. 3 (108). DOI: 10.4123/CUBS.108.2
[2] Guvalov A.A., Mamedov A.D., Kakhramanov N.T. Effect of modificators on the properties of asphalt concrete. ChemChemTech. 2021. 10. P. 98 – 104. https://elibrary.ru/item.asp?id =46663867& ysclid=lgp03rf02619067675
[3] Komarinsky M.V., Smirnov S.I., Burtseva D.E. Cast and self-compacting concrete mixes. Construction of unique buildings and structures. 2015. 11 (38). P. 106 – 118. DOI: 10.18720/CUBS.38.8
[4] Kopylova A.I., Vatin N.I., Pestryakov I.I. Experimental comparison of the vapor permeability characteristics of the main building materials. Construction of unique buildings and structures. 2014. 10 (25). P. 98 – 108. DOI: 10.18720/CUBS.25.8
[5] Bratchun V.I., Pakter M.K., Bespalov V.L., Stukalov A.A. Patterns of technological and operational aging of road organic concrete. Modern materials and products. 2014. Р. 46 – 58.
[6] Sviridova T.V., Bobrova O.B., Ilina O.Y., Nekerov E.A. Development of steelmaking slag processing scheme for environmental stress reduction. Journal of Physics: Conference Series. 2019. 1399. DOI:10.1088/1742-6596/1399/5/055033
[7] Khodosevich V.E., Shkarupa V.I., Yanov N.K. Use of open-hearth slags in hydraulic construction. Hydrotechnical Construction 1976. 10. Р. 572 – 574. https://doi.org/10.1007/BF02399216
[8] Dzhevaga N.V., Lobacheva O.L. Granulation of open-hearth slag in conditions of reducing anthropogenic load on the environment. Ecology and Recycling. 2024 DOI:10.17580/chm.2024.02.13
[9] Gorshkov V.S., Timashov V.V., Savelyev V.G. Methods of physical and chemical analysis of binders. M.: Stroyizdat, 1981. 335 p.
[10] Lesnichenko E.N., Chernysheva N.V., Drebezgova M.Yu., Kovalenko E.V., Bocharnikov A.L. Development of a multicomponent gypsum cement binder using the method of mathematical planning of the experiment. Construction Materials and Products. 2022. 5 (2). P. 5 – 12. DOI: 10.58224/2618-7183-2022-5-2-5-12
[11] Wang Ya Li, Xi Bo Hu, Yu Han Yao, Su Ping Cui. Research Progress of Slag Structure and Hydration Activity. Materials Science Forum. 2021. P. 972 – 979. DOI:10.4028/www.scientific.net/MSF.1035.972
[12] Korkmaz A.V. Effect of Thermal Activation on the Mineralogical Structure of Magnesium Slag. International Journal of Computational and Experimental Science and Engineering 2024. 10 (1). P. 56 – 64. DOI: 10.22399/ijcesen.251
[13] Khobotova E.B., Ignatenko M.I., Kalyuzhnaya Yu.S., Graivoronskaya I.V., Larin V.I. Toxic Properties and Hydraulic Activity of Dump Blast Furnace Slag. Izvestiya. Ferrous Metallurgy.  2020. 63 (9). Р. 693 – 698. DOI: 10.17073/0368-0797-2020-9-693-698
[14] Chen W., Brouwers H.J.H. The hydration of slag, part 1: reaction models for alkali-activated slag. J Mater Sci. 2007. 42. P. 428 – 443 DOI: 10.1007/s10853-006-0873-2
[15] Liu W., Li H., Zhu H., Xu P. Properties of a Steel Slag-Permeable Asphalt Mixture and the Reaction of the Steel Slag-Asphalt Interface. Materials (Basel). 2019. 12 (21):3603. DOI: 10.3390/ma12213603
[16] Xingbei L., Chao Z., Huanan Y., Guoping Q., Xiaoguang Z., Hongyu Z., Lizhang H., Feng Z., Yixiong Z. Research on the Properties of Steel Slag with Different Preparation Processes. Materials (Basel). 2024. 17 (7):1555. DOI: 10.3390/ma17071555
[17] Lebedev A.B., Utkov V.A., Bazhin V.Y. Use of alumina production waste red mud during molten sulfur-containing slag granulation. Metallurgist. 2019. 63 (7-8). P. 727 – 732. DOI: 10.1007/s11015-019-00882-z
[18] Yang Shu, Zhang Li, Yu De. Intensive development and comprehensive utilization of metallurgical slag. Applied Mechanics and Materials. 2012. Vol. 174-177. P. 1424 – 1428. DOI: 10.4028/www.scientific.net/AMM.174-177.1424
[19] Kae-Long L., Kuen-Sheng W., Bor-Yu T., Chung-Yei L. Hydraulic activity of cement mixed with slag from vitrified solid waste incinerator fly ash. Waste Manag. Res. 2003. 21 (6) P. 67 – 74. DOI: 10.1177/0734242X0302100609
[20] Ferreira C, Ribeiro A, Ottosen L. Possible applications for municipal solid waste fly ash. J Hazard Mater. 2003. 96 (2-3). P. 201 – 216. DOI: 10.1016/s0304-3894(02)00201-7
Bratchun V.I., Bespalov V.L., Ahmed A. Alani, Zhevanov V.V., Romasyuk E.A. Hydraulic activity of crushing screenings of waste open-hearth slag. Construction Materials and Products. 2024. 7 (3). 3. https://doi.org/10.58224//2618-7183-2024-7-3-3