Large cities, as financial centres, attract a dense adult population, leading to a high demand for housing. This growth requires urban expansion and increased building density, which disrupts the ecosystem and gives rise to a concentrated urban heat island (UHI). In a study conducted in Moscow, a numerical climate simulation model was used to explore the relationship between urban indices, specifically the building height-to-width ratio (H/W), sky view factor (SVF), and UHI intensity. The results indicated significant impacts of both H/W and SVF on UHI. More accurate predictions were achieved by adjusting coefficients in the Oke model using non-linear regression of simulated H/W and heat island intensity. These findings highlight the crucial role of urban morphology in UHI formation and development, providing a scientific basis for mitigating UHI impacts through urban planning strategies. While it is challenging to generalise a formula for calculating UHI intensity due to the diversity of urban forms, our research method offers a valuable approach for similar studies in other cities.
[1] Stewart I.D., Oke T.R. Local climate zones for urban temperature studies. Bull Am Meteorol Soc. Dec. 2012. 93 (12) P. 1879 – 1900. doi: 10.1175/BAMS-D-11-00019.1
[2] Chapman S., Watson J.E.M., Salazar A., Thatcher M., McAlpine C.A. The impact of urbanization and climate change on urban temperatures: a systematic review. Oct. 01, 2017. Springer Netherlands. doi: 10.1007/s10980-017-0561-4
[3] Oke T.R. The energetic basis of the urban heat island, 1982.
[4] Zhao L., Lee X., Smith R.B., Oleson K. Strong contributions of local background climate to urban heat islands. Nature. 2014. 511 (7508) P. 216 – 219. doi: 10.1038/nature13462
[5] Grimm N.B. et al. Global Change and the Ecology of Cities. [Online]. Available: http://science.sciencemag.org/
[6] Patz J.A., Campbell-Lendrum D., Holloway T., Foley J.A. Impact of regional climate change on human health. Nov. 17, 2005, Nature Publishing Group. doi: 10.1038/nature04188
[7] Eliasson I.È. The use of climate knowledge in urban planning.
[8] Tan J. et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int J Biometeorol. Jan. 2010. 54 (1). P 75 – 84. doi: 10.1007/s00484-009-0256-x
[9] Cao Q., Yu D., Georgescu M., Wu J., Wang W. Impacts of future urban expansion on summer climate and heat-related human health in eastern China. Environ Int. Mar. 2018. 12. P. 134 – 146. doi: 10.1016/j.envint.2017.12.027
[10] Schatz J., Kucharik C.J. Urban climate effects on extreme temperatures in Madison, Wisconsin, USA. Environmental Research Letters. Sep. 2015. 10 (9). doi: 10.1088/1748-9326/10/9/094024
[11] Li D., Bou-Zeid E. Synergistic Interactions between Urban Heat Islands and Heat Waves: The Impact in Cities Is Larger than the Sum of Its Parts*”. doi: 10.1175/JAMC-D-13-02.s1
[12] Gabriel K.M.A., Endlicher W.R. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environmental Pollution. Aug. 2011. 159 (8-9). P. 2044 – 2050. doi: 10.1016/j.envpol.2011.01.016
[13] Marciotto E.R., Oliveira A.P., Hanna S.R. Modeling study of the aspect ratio influence on urban canopy energy fluxes with a modified wall-canyon energy budget scheme. Build Environ. Nov. 2010. 45 (11). P. 2497 – 2505. doi: 10.1016/j.buildenv.2010.05.012
[14] L.W.A. van Hove, Jacobs C.M.J., Heusinkveld B.G., Elbers J.A., Van Driel B.L., Holtslag A.A.M. Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Build Environ. Jan. 2015. 83. P. 91 – 103. doi: 10.1016/j.buildenv.2014.08.029
[15] Li H., Zhou Y., Wang X., Zhou X., Zhang H., Sodoudi S. Quantifying urban heat island intensity and its physical mechanism using WRF/UCM. Science of the Total Environment. Feb. 2019. 650. P. 3110 – 3119. doi: 10.1016/j.scitotenv.2018.10.025
[16] Zhou X., Chen H. Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Science of the Total Environment. Sep. 2018635. P. 1467 – 1476.. doi: 10.1016/j.scitotenv.2018.04.091
[17] Dirksen M., Ronda R.J., Theeuwes N.E., Pagani G.A. Sky view factor calculations and its application in urban heat island studies. Urban Clim. Dec. 2019. 30. doi: 10.1016/j.uclim.2019.100498
[18] Nasar-u-Minallah M., Haase D., Qureshi S., Zia S., Fatima M. Ecological monitoring of urban thermal field variance index and determining the surface urban heat island effects in Lahore, Pakistan. Environ Monit Assess. Oct. 2023. 195 (10). doi: 10.1007/s10661-023-11799-1
[19] Qi Y., Li H., Pang Z., Gao W., Liu C. A Case Study of the Relationship Between Vegetation Coverage and Urban Heat Island in a Coastal City by Applying Digital Twins. Front Plant Sci. Apr. 2022. 13. doi: 10.3389/fpls.2022.861768
[20] Zhou B., Rybski D., Kropp J.P. The role of city size and urban form in the surface urban heat island. Sci Rep. Dec. 2017. 7 (1). doi: 10.1038/s41598-017-04242-2
[21] Duckworth F.S., Sandberg J.S. The Effect of Cities upon Horizontal and Vertical Temperature Gradients.
[22] Makropoulou M. Microclimate improvement of Inner-city urban areas in a Mediterranean coastal city. Sustainability (Switzerland). May 2017. 9 (6). doi: 10.3390/su9060882
[23] Akbari H. et al. Local climate change and urban heat island mitigation techniques – The state of the art,” Journal of Civil Engineering and Management Jan. 2016.. 22 (1). P. 1 – 16. doi: 10.3846/13923730.2015.1111934
[24] Gago E.J., Roldan J., Pacheco-Torres R., Ordóñez J. The city and urban heat islands: A review of strategies to mitigate adverse effects. 2013. doi: 10.1016/j.rser.2013.05.057
[25] Blocken B. Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build Environ. Sep. 2015. 91. P. 219 – 245. doi: 10.1016/j.buildenv.2015.02.015
[26] Mirzaei P.A., Haghighat F. Approaches to study Urban Heat Island – Abilities and limitations. Build Environ. Oct. 2010. 45 (10). P. 2192 – 2201. doi: 10.1016/j.buildenv.2010.04.001
[27] Mirzaei P.A. Recent challenges in modeling of urban heat island. Dec. 01, 2015, Elsevier Ltd. doi: 10.1016/j.scs.2015.04.001
[28] Pigeon G., Moscicki M.A., Voogt J.A., Masson V. Simulation of fall and winter surface energy balance over a dense urban area using the TEB scheme. Meteorology and Atmospheric Physics. 2008. 102 (3-4). P. 159 – 171. doi: 10.1007/s00703-008-0320-9
[29] Thorsson S., Lindberg F., Eliasson I., Holmer B. Different methods for estimating the mean radiant temperature in an outdoor urban setting. in International Journal of Climatology, Nov. 2007. P. 1983 – 1993. doi: 10.1002/joc.1537
[30] Mirzaei P.A., Haghighat F. Approaches to study Urban Heat Island – Abilities and limitations,” Build Environ. Oct. 2010. 45 (10). P. 2192 – 2201. doi: 10.1016/j.buildenv.2010.04.001
[31] Botham-Myint D., Recktenwald G.W., Sailor D.J. Thermal footprint effect of rooftop urban cooling strategies. Urban Clim. Dec. 2015.14. P. 268 – 277. doi: 10.1016/j.uclim.2015.07.005
[32] Lindberg F., Grimmond C.S.B. Nature of vegetation and building morphology characteristics across a city: Influence on shadow patterns and mean radiant temperatures in London. Urban Ecosyst. Nov. 2011. 14 (4). P. 617 – 634. doi: 10.1007/s11252-011-0184-5
[33] Chow W.T.L., Brazel A.J. Assessing xeriscaping as a sustainable heat island mitigation approach for a desert city. Build Environ. Jan. 2012. 47 (1). P. 170 – 181. doi: 10.1016/j.buildenv.2011.07.027
[34] Roth M., Lim V.H. Evaluation of canopy-layer air and mean radiant temperature simulations by a microclimate model over a tropical residential neighbourhood. Build Environ. Feb. 2017. 112. P. 177 – 189. doi: 10.1016/j.buildenv.2016.11.026
[35] Singh M., Laefer D.F. Recent Trends and Remaining Limitations in Urban Microclimate Models. Open Urban Studies and Demography Journal. Feb. 2015. 1 (1) P. 1 – 12. doi: 10.2174/2352631901401010001
[36] Michael Bruse and Heribert Fleer Simulating_surface_plant_air_interaction. Environmental Modelling & Software. 1998. 13 (3) P. 373 – 384.
[37] Emmanuel R., Fernando H.J.S. Urban heat islands in humid and arid climates: Role of urban form and thermal properties in Colombo, Sri Lanka and Phoenix, USA. Clim Res. Sep. 2007. 34 (3) P. 241 – 251. doi: 10.3354/cr00694
[38] Yang X., Zhao L., Bruse M., Meng Q. Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Build Environ. Feb. 2013. 60. P. 93 – 104. doi: 10.1016/j.buildenv.2012.11.008
[39] Wang Y., Bakker F., R. de Groot, Wörtche H. Effect of ecosystem services provided by urban green infrastructure on indoor environment: A literature review. 2014, Elsevier Ltd. doi: 10.1016/j.buildenv.2014.03.021
[40] Müller N., Kuttler W., Barlag A.B. Counteracting urban climate change: Adaptation measures and their effect on thermal comfort. Theor Appl Climatol. 2014. 115 (1-2). P. 243 – 257. doi: 10.1007/s00704-013-0890-4
[41] Dimoudi A., Nikolopoulou M.“Vegetation in the urban environment: microclimatic analysis and bene®ts.
[42] Gatto E. et al. Impact of Urban vegetation on outdoor thermal comfort: Comparison between a Mediterranean city (Lecce, Italy) and a northern European city (Lahti, Finland). Forests Feb. 2020.. 11 (2). doi: 10.3390/f11020228
[43] Erlwein S., Pauleit S. Trade-offs between urban green space and densification: Balancing outdoor thermal comfort, mobility, and housing demand. Urban Plan. 2021. 6 (1). P. 5 – 19. doi: 10.17645/UP.V6I1.3481
[44] Coutts A.M., Beringer J., Tapper N.J. Impact of increasing urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia. J Appl Meteorol Climatol. Apr. 2007. 46 (4). P. 477 – 493. doi: 10.1175/JAM2462.1
[45] Elansky N.F., Lavrova O.V., Rakin A.A., Skorokhod A.I. Anthropogenic disturbances of the atmosphere in Moscow region. Doklady Earth Sciences. 2014. 454 (2). P. 158 – 162. doi: 10.1134/S1028334X14020020
[46] Lee H., Mayer H., Chen L. Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landsc Urban Plan Apr. 2016.. 148. P. 37 – 50. doi: 10.1016/j.landurbplan.2015.12.00
[47] Sharmin T., Steemers K., Matzarakis A. Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustain Cities So. Oct. 2017. 34. P. 293 – 308. doi: 10.1016/j.scs.2017.07.006
[48] Toparlar Y., Blocken B., Maiheu B., van Heijst G.J.F. A review on the CFD analysis of urban microclimate. 2017. Elsevier Ltd. doi: 10.1016/j.rser.2017.05.248
[49] Acero J.A., Herranz-Pascual K. A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Build Environ. Nov. 2015. 93 (P2). P. 245 – 257. doi: 10.1016/j.buildenv.2015.06.028
[50] Morakinyo T.E., Kong, L. Lau K.K.L., Yuan C., Ng E. A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Build Environ. Apr. 2017. 115. P. 1 – 17. doi: 10.1016/j.buildenv.2017.01.005
[51] Liu J., Chen J.M., Black T.A., Novak M.D. E-E modelling of turbulent air flow downwind of a model forest edge ** Corresponding author, and presently with Canada Centre for Remote Sensing,” 1996.
[52] Tetsuji Yamada A numerical model study of turbulent airflow in and above a forest canopy. Journal of the Meteorological Society of Japan. 1982.60 (1). P. 439 – 454. doi: 10.2151/jmsj1965.60.1_439
[53] Tetsuji Yamada and George Mellor A simulation of the Wangara atmospheric boundary layer data. J Atmos Sci. 1975. 32. P. 2309 – 2329. doi: 10.1175/1520-0469(1975)032<2309:ASOTWA>2.0.CO;2
[54] Zheng Y.et al. GIS-based mapping of Local Climate Zone in the high-density city of Hong Kong. Urban Clim. Jun. 2018. 24. P. 419 – 448. doi: 10.1016/j.uclim.2017.05.008.
[55] Unal Cilek M., Cilek A. Analyses of land surface temperature (LST) variability among local climate zones (LCZs) comparing Landsat-8 and ENVI-met model data. Sustain Cities Soc. Jun. 2021. 69. doi: 10.1016/j.scs.2021.102877
[56] Chen L.et al. Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: A GIS-based simulation approach. International Journal of Climatology. 32 (1). 2012. P. 121 – 136. doi: 10.1002/joc.2243
[57] Theeuwes N.E., Steeneveld G.J., Ronda R.J., Heusinkveld B.G., L.W.A. van Hove, Holtslag A.A.M. Seasonal dependence of the urban heat island on the street canyon aspect ratio. Quarterly Journal of the Royal Meteorological Society. Oct. 2014. 140 (684). P. 2197 – 2210. doi: 10.1002/qj.2289
[2] Chapman S., Watson J.E.M., Salazar A., Thatcher M., McAlpine C.A. The impact of urbanization and climate change on urban temperatures: a systematic review. Oct. 01, 2017. Springer Netherlands. doi: 10.1007/s10980-017-0561-4
[3] Oke T.R. The energetic basis of the urban heat island, 1982.
[4] Zhao L., Lee X., Smith R.B., Oleson K. Strong contributions of local background climate to urban heat islands. Nature. 2014. 511 (7508) P. 216 – 219. doi: 10.1038/nature13462
[5] Grimm N.B. et al. Global Change and the Ecology of Cities. [Online]. Available: http://science.sciencemag.org/
[6] Patz J.A., Campbell-Lendrum D., Holloway T., Foley J.A. Impact of regional climate change on human health. Nov. 17, 2005, Nature Publishing Group. doi: 10.1038/nature04188
[7] Eliasson I.È. The use of climate knowledge in urban planning.
[8] Tan J. et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int J Biometeorol. Jan. 2010. 54 (1). P 75 – 84. doi: 10.1007/s00484-009-0256-x
[9] Cao Q., Yu D., Georgescu M., Wu J., Wang W. Impacts of future urban expansion on summer climate and heat-related human health in eastern China. Environ Int. Mar. 2018. 12. P. 134 – 146. doi: 10.1016/j.envint.2017.12.027
[10] Schatz J., Kucharik C.J. Urban climate effects on extreme temperatures in Madison, Wisconsin, USA. Environmental Research Letters. Sep. 2015. 10 (9). doi: 10.1088/1748-9326/10/9/094024
[11] Li D., Bou-Zeid E. Synergistic Interactions between Urban Heat Islands and Heat Waves: The Impact in Cities Is Larger than the Sum of Its Parts*”. doi: 10.1175/JAMC-D-13-02.s1
[12] Gabriel K.M.A., Endlicher W.R. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environmental Pollution. Aug. 2011. 159 (8-9). P. 2044 – 2050. doi: 10.1016/j.envpol.2011.01.016
[13] Marciotto E.R., Oliveira A.P., Hanna S.R. Modeling study of the aspect ratio influence on urban canopy energy fluxes with a modified wall-canyon energy budget scheme. Build Environ. Nov. 2010. 45 (11). P. 2497 – 2505. doi: 10.1016/j.buildenv.2010.05.012
[14] L.W.A. van Hove, Jacobs C.M.J., Heusinkveld B.G., Elbers J.A., Van Driel B.L., Holtslag A.A.M. Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Build Environ. Jan. 2015. 83. P. 91 – 103. doi: 10.1016/j.buildenv.2014.08.029
[15] Li H., Zhou Y., Wang X., Zhou X., Zhang H., Sodoudi S. Quantifying urban heat island intensity and its physical mechanism using WRF/UCM. Science of the Total Environment. Feb. 2019. 650. P. 3110 – 3119. doi: 10.1016/j.scitotenv.2018.10.025
[16] Zhou X., Chen H. Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Science of the Total Environment. Sep. 2018635. P. 1467 – 1476.. doi: 10.1016/j.scitotenv.2018.04.091
[17] Dirksen M., Ronda R.J., Theeuwes N.E., Pagani G.A. Sky view factor calculations and its application in urban heat island studies. Urban Clim. Dec. 2019. 30. doi: 10.1016/j.uclim.2019.100498
[18] Nasar-u-Minallah M., Haase D., Qureshi S., Zia S., Fatima M. Ecological monitoring of urban thermal field variance index and determining the surface urban heat island effects in Lahore, Pakistan. Environ Monit Assess. Oct. 2023. 195 (10). doi: 10.1007/s10661-023-11799-1
[19] Qi Y., Li H., Pang Z., Gao W., Liu C. A Case Study of the Relationship Between Vegetation Coverage and Urban Heat Island in a Coastal City by Applying Digital Twins. Front Plant Sci. Apr. 2022. 13. doi: 10.3389/fpls.2022.861768
[20] Zhou B., Rybski D., Kropp J.P. The role of city size and urban form in the surface urban heat island. Sci Rep. Dec. 2017. 7 (1). doi: 10.1038/s41598-017-04242-2
[21] Duckworth F.S., Sandberg J.S. The Effect of Cities upon Horizontal and Vertical Temperature Gradients.
[22] Makropoulou M. Microclimate improvement of Inner-city urban areas in a Mediterranean coastal city. Sustainability (Switzerland). May 2017. 9 (6). doi: 10.3390/su9060882
[23] Akbari H. et al. Local climate change and urban heat island mitigation techniques – The state of the art,” Journal of Civil Engineering and Management Jan. 2016.. 22 (1). P. 1 – 16. doi: 10.3846/13923730.2015.1111934
[24] Gago E.J., Roldan J., Pacheco-Torres R., Ordóñez J. The city and urban heat islands: A review of strategies to mitigate adverse effects. 2013. doi: 10.1016/j.rser.2013.05.057
[25] Blocken B. Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build Environ. Sep. 2015. 91. P. 219 – 245. doi: 10.1016/j.buildenv.2015.02.015
[26] Mirzaei P.A., Haghighat F. Approaches to study Urban Heat Island – Abilities and limitations. Build Environ. Oct. 2010. 45 (10). P. 2192 – 2201. doi: 10.1016/j.buildenv.2010.04.001
[27] Mirzaei P.A. Recent challenges in modeling of urban heat island. Dec. 01, 2015, Elsevier Ltd. doi: 10.1016/j.scs.2015.04.001
[28] Pigeon G., Moscicki M.A., Voogt J.A., Masson V. Simulation of fall and winter surface energy balance over a dense urban area using the TEB scheme. Meteorology and Atmospheric Physics. 2008. 102 (3-4). P. 159 – 171. doi: 10.1007/s00703-008-0320-9
[29] Thorsson S., Lindberg F., Eliasson I., Holmer B. Different methods for estimating the mean radiant temperature in an outdoor urban setting. in International Journal of Climatology, Nov. 2007. P. 1983 – 1993. doi: 10.1002/joc.1537
[30] Mirzaei P.A., Haghighat F. Approaches to study Urban Heat Island – Abilities and limitations,” Build Environ. Oct. 2010. 45 (10). P. 2192 – 2201. doi: 10.1016/j.buildenv.2010.04.001
[31] Botham-Myint D., Recktenwald G.W., Sailor D.J. Thermal footprint effect of rooftop urban cooling strategies. Urban Clim. Dec. 2015.14. P. 268 – 277. doi: 10.1016/j.uclim.2015.07.005
[32] Lindberg F., Grimmond C.S.B. Nature of vegetation and building morphology characteristics across a city: Influence on shadow patterns and mean radiant temperatures in London. Urban Ecosyst. Nov. 2011. 14 (4). P. 617 – 634. doi: 10.1007/s11252-011-0184-5
[33] Chow W.T.L., Brazel A.J. Assessing xeriscaping as a sustainable heat island mitigation approach for a desert city. Build Environ. Jan. 2012. 47 (1). P. 170 – 181. doi: 10.1016/j.buildenv.2011.07.027
[34] Roth M., Lim V.H. Evaluation of canopy-layer air and mean radiant temperature simulations by a microclimate model over a tropical residential neighbourhood. Build Environ. Feb. 2017. 112. P. 177 – 189. doi: 10.1016/j.buildenv.2016.11.026
[35] Singh M., Laefer D.F. Recent Trends and Remaining Limitations in Urban Microclimate Models. Open Urban Studies and Demography Journal. Feb. 2015. 1 (1) P. 1 – 12. doi: 10.2174/2352631901401010001
[36] Michael Bruse and Heribert Fleer Simulating_surface_plant_air_interaction. Environmental Modelling & Software. 1998. 13 (3) P. 373 – 384.
[37] Emmanuel R., Fernando H.J.S. Urban heat islands in humid and arid climates: Role of urban form and thermal properties in Colombo, Sri Lanka and Phoenix, USA. Clim Res. Sep. 2007. 34 (3) P. 241 – 251. doi: 10.3354/cr00694
[38] Yang X., Zhao L., Bruse M., Meng Q. Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Build Environ. Feb. 2013. 60. P. 93 – 104. doi: 10.1016/j.buildenv.2012.11.008
[39] Wang Y., Bakker F., R. de Groot, Wörtche H. Effect of ecosystem services provided by urban green infrastructure on indoor environment: A literature review. 2014, Elsevier Ltd. doi: 10.1016/j.buildenv.2014.03.021
[40] Müller N., Kuttler W., Barlag A.B. Counteracting urban climate change: Adaptation measures and their effect on thermal comfort. Theor Appl Climatol. 2014. 115 (1-2). P. 243 – 257. doi: 10.1007/s00704-013-0890-4
[41] Dimoudi A., Nikolopoulou M.“Vegetation in the urban environment: microclimatic analysis and bene®ts.
[42] Gatto E. et al. Impact of Urban vegetation on outdoor thermal comfort: Comparison between a Mediterranean city (Lecce, Italy) and a northern European city (Lahti, Finland). Forests Feb. 2020.. 11 (2). doi: 10.3390/f11020228
[43] Erlwein S., Pauleit S. Trade-offs between urban green space and densification: Balancing outdoor thermal comfort, mobility, and housing demand. Urban Plan. 2021. 6 (1). P. 5 – 19. doi: 10.17645/UP.V6I1.3481
[44] Coutts A.M., Beringer J., Tapper N.J. Impact of increasing urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia. J Appl Meteorol Climatol. Apr. 2007. 46 (4). P. 477 – 493. doi: 10.1175/JAM2462.1
[45] Elansky N.F., Lavrova O.V., Rakin A.A., Skorokhod A.I. Anthropogenic disturbances of the atmosphere in Moscow region. Doklady Earth Sciences. 2014. 454 (2). P. 158 – 162. doi: 10.1134/S1028334X14020020
[46] Lee H., Mayer H., Chen L. Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landsc Urban Plan Apr. 2016.. 148. P. 37 – 50. doi: 10.1016/j.landurbplan.2015.12.00
[47] Sharmin T., Steemers K., Matzarakis A. Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustain Cities So. Oct. 2017. 34. P. 293 – 308. doi: 10.1016/j.scs.2017.07.006
[48] Toparlar Y., Blocken B., Maiheu B., van Heijst G.J.F. A review on the CFD analysis of urban microclimate. 2017. Elsevier Ltd. doi: 10.1016/j.rser.2017.05.248
[49] Acero J.A., Herranz-Pascual K. A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Build Environ. Nov. 2015. 93 (P2). P. 245 – 257. doi: 10.1016/j.buildenv.2015.06.028
[50] Morakinyo T.E., Kong, L. Lau K.K.L., Yuan C., Ng E. A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Build Environ. Apr. 2017. 115. P. 1 – 17. doi: 10.1016/j.buildenv.2017.01.005
[51] Liu J., Chen J.M., Black T.A., Novak M.D. E-E modelling of turbulent air flow downwind of a model forest edge ** Corresponding author, and presently with Canada Centre for Remote Sensing,” 1996.
[52] Tetsuji Yamada A numerical model study of turbulent airflow in and above a forest canopy. Journal of the Meteorological Society of Japan. 1982.60 (1). P. 439 – 454. doi: 10.2151/jmsj1965.60.1_439
[53] Tetsuji Yamada and George Mellor A simulation of the Wangara atmospheric boundary layer data. J Atmos Sci. 1975. 32. P. 2309 – 2329. doi: 10.1175/1520-0469(1975)032<2309:ASOTWA>2.0.CO;2
[54] Zheng Y.et al. GIS-based mapping of Local Climate Zone in the high-density city of Hong Kong. Urban Clim. Jun. 2018. 24. P. 419 – 448. doi: 10.1016/j.uclim.2017.05.008.
[55] Unal Cilek M., Cilek A. Analyses of land surface temperature (LST) variability among local climate zones (LCZs) comparing Landsat-8 and ENVI-met model data. Sustain Cities Soc. Jun. 2021. 69. doi: 10.1016/j.scs.2021.102877
[56] Chen L.et al. Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: A GIS-based simulation approach. International Journal of Climatology. 32 (1). 2012. P. 121 – 136. doi: 10.1002/joc.2243
[57] Theeuwes N.E., Steeneveld G.J., Ronda R.J., Heusinkveld B.G., L.W.A. van Hove, Holtslag A.A.M. Seasonal dependence of the urban heat island on the street canyon aspect ratio. Quarterly Journal of the Royal Meteorological Society. Oct. 2014. 140 (684). P. 2197 – 2210. doi: 10.1002/qj.2289
Le M.T., Bakaeva N.V. Assessment of the influence of building parameters on the urban heat island in the districts of Moscow. Construction Materials and Products. 2024. 7 (5). 10. https://doi.org/10.58224/2618-7183-2024-7-5-10