The article substantiates the possibility of obtaining organo-inorganic composite materials with improved functional properties based on technogenic soil and high-molecular substances. The specific effective activity of natural radionuclides (226Ra, 232Th, 40K) of technogenic soil was 97±12 Bq/kg, which allows use in the production of building materials without restrictions. Using the methods of atomic emission spectrometry with inductively coupled plasma, infrared spectroscopy, differential scanning calorimetry and thermogravimetry, powder diffraction, scanning electron microscopy, data on the composition, properties and structural features of technogenic soil were obtained, allowing us to assess the possibility of its use as a dispersed filler for the composite. It was revealed that the organo-inorganic composite material is frost-resistant, waterproof, and is characterized by a compressive strength of 6.20 MPa and a thermal conductivity of 0.20 W/(m•K). The mechanism of composite structure formation was established, which consists in the reorganization of hydrate shells and the formation of organomineral complexes during the interaction of the polymer matrix and dispersed filler particles. The effectiveness of cryogenic treatment in transforming the pore space of the composite and improving its functional properties was shown. It was revealed that cryostructuring contributes to an increase in the pore volume of the composite by 1.4 times, which determines its thermophysical properties.
1. Kasemodel M.C. Sakamoto I.K., Varesche M.B.A., Rodrigues V.G.S. Potentially toxic metal contamination and microbial community analysis in an abandoned Pb and Zn mining waste deposit. Science of the Total Environment. 2019. 675. Р. 367 – 379. DOI: 10.1016/j.scitotenv.2019.04.223
2. Matinde E., Simate G.S., Ndlovu S. Mining and metallurgical wastes: A review of recycling and re-use practices. Journal of the Southern African Institute of Mining and Metallurgy. 2018. 118(8). Р. 825 – 844. DOI: 10.17159/2411-9717/2018/v118n8a5
3. Brooks S.J., Escudero-Onate C., Lillicrap A.D. An ecotoxicological assessment of mine tailings from three Norwegian mines. Chemosphere. 2019. 233. P. 818 – 827. DOI: 10.1016/j.chemosphere.2019.06.003
4. García-Lorenzo M.L., Marimón J., Navarro-Hervás M.C., Pérez-Sirvent C., Martínez-Sánchez M.J., Molina-Ruiz J. Impact of acid mine drainages on surficial wasters of an abandoned mining site. Environmental Science and Pollution Research. 2016. 23 (7). P. 6014 – 6023. DOI: 10.1007/s11356-015-5337-2
5. Krechetov P., Chernitsova O., Sharapova A., Terskaya E. Technogenic geochemical evolution of chernozems in the sulfur coal mining areas. Journal of Soils and Sediments. 2019. 19. P. 3139 – 3154. DOI: 10.1007/s11368-018-2010-7
6. Shi P., Zhang Y., Hu Z., Ma K., Wang H., Chai T. The response of soil bacterial communities to mining subsidence in the west China Aeolian sand area. Applied Soil Ecology. 2017. 121. P. 1 – 10. DOI: 10.1016/j.apsoil.2017.09.020
7. Volokitina I., Kolesnikov A., Fediuk R., Klyuev S., Sabitov L., Volokitin A., Zhuniskaliyev T., Kelamanov B., Yessengaliev D., Yerzhanov A., Kolesnikova O. Study of the Properties of Antifriction Rings under Severe Plastic Deformation. Materials. 2022. 15 (7). P. 2584.
8. Amran M., Fediuk R., Klyuev S., Qader D.N. Sustainable development of basalt fiber-reinforced high-strength eco-friendly concrete with a modified composite binder. Case Studies in Construction Materials. 2022. 17. e01550.
9. Fu Z., Xi S. The effects of heavy metals on human metabolism. Toxicology mechanisms and methods. 2019. 30 (3). P. 167 – 176. DOI: 10.1080/15376516.2019.1701594
10. El Machi A., Berdai Y., Mabroum S., Safhi A.E.M., Taha Y., Benzaazoua M., Hakkou R. Recycling of Mine Wastes in the Concrete Industry: A Review. Buildings. 2024. 14(6). P. 1508. DOI: 10.3390/buildings14061508
11. El Machi A., Hakkou R. Implementation of Circular Economy Between Mining and Construction Sectors: A Promising Route to Achieve Sustainable Development Goals. Sustainable Structures and Buildings; Springer: Berlin/Heidelberg, Germany. 2024. P. 51 – 63. DOI:10.1007/978-3-031-46688-5_4
12. Yu H., Zahidi I., Liang D. Sustainable Porous-Insulation Concrete (SPIC) Material: Recycling Aggregates from Mine Solid Waste, White Waste and Construction Waste. Journal of Materials Research and Technology. 2023. 23. P. 5733 – 5745. DOI: 10.1016/j.jmrt.2023.02.181
13. Garcia-Troncoso N., Baykara H., Cornejo M.H., Riofrio A., Tinoco-Hidalgo M., Flores-Rada J. Comparative Mechanical Properties of Conventional Concrete Mixture and Concrete Incorporating Mining Tailings Sands. Case Studies in Construction Materials. 2022. 16. e01031. DOI: 10.1016/j.cscm.2022.e01031
14. Benahsina A., El Haloui Y., Taha Y., Elomari M., Bennouna M.A. Natural Sand Substitution by Copper Mine Waste Rocks for Concrete Manufacturing. Journal of building engineering. 2022. 47. 103817. DOI: 10.1016/j.jobe.2021.103817
15. Oubaha S., El Machi A., Mabroum S., Taha Y., Benzaazoua M., Hakkou R. Recycling of Phosphogypsum and Clay By-Products from Phosphate Mines for Sustainable Alkali-Activated Construction Materials. Construction and Building Materials. 2024. 411. 134262. DOI: 10.1016/j.conbuildmat.2023.134262.
16. González J.S., Boadella I.L., Gayarre F.L., Pérez C.L.C., López M.S., Stochino F. Use of Mining Waste to Produce Ultra-High-Performance Fibre-Reinforced Concrete. Materials. 2020. 13. DOI: 10.3390/ma13112457.
17. Yu H., Zahidi I., Fai C.M., Liang D., Madsen D.Ø. Mineral waste recycling, sustainable chemical engineering, and circular economy. Results in Engineering. 2024. 21. 101865. DOI: 10.1016/j.rineng.2024.101865
18. Kongar-Syuryun Ch., Ivannikov A., Khayrutdinov A., Tyulyaeva Y. Geotechnology using composite materials from man-made waste is a paradigm of sustainable development. Materials today: proceedings. 2021. 38(4). P. 2078-2082. DOI: 10.1016/j.matpr.2020.10.145.
19. Mikheeva I.V., Androkhanov V.A. Physical properties of technosols at brown coal mine wastes in Eastern Siberia. Soil and Tillage Research. 2022. 217. P. 105264. DOI: 10.1016/j.still.2021.105264
20. Lozinsky V.I. Cryotropic gelation of poly(vinyl alcohol) solutions. Russian Chemical Reviews. 1998. 67 (7). P. 573 – 586.
21. Lozinsky V.I., Okay O. Basic principles of cryotropic gelation. Advances in Polymer Science. 2014. 263. P. 49 – 102. DOI: 10.1007/978-3-319-05846-7_2.
22. Lozinsky V.I., Damshkaln L.G., Shaskol'Skii B.L., Babushkina T.A., Kurochkin I.N., Kurochkin I.I. A Study of cryostructuring of polymer systems: 27. Physicochemical properties of poly(vinyl alcohol) cryogels and specific features of their macroporous morphology. Colloid Journal. 2007. 69 (6). P. 747 – 764.
23. Lozinsky V.I., Damshkaln L.G., Kurochkin I.N., Kurochkin I.I. A Study of cryostructuring of polymer systems. 33. Effect of rate of chilling aqueous poly(vinyl alcohol) solutions during their freezing on physicochemical properties and porous structure of resulting cryogels. Colloid Journal. 2012. 74 (3). P. 319 – 327.
24. Trieu H.H., Qutubuddin S. Poly(vinyl alcohol) hydrogels. 1 .Microscopic structure by freeze-etching and critical point drying techniques. Colloid and Polymer Science. 1994. 272. P. 301 – 309.
25. Willcox P.J., Howie D.W., Schmidt-Rohr K., Hoagland D.A., Gido S.P., Pudjijanto S., Kleiner L.W., Venkatraman S. Microstructure of Poly(Vinyl Alcohol) Hydrogels Produced by Freeze/Thaw Cycling. Journal of Polymer Science. Part B: Polymer Physics. 1999. 37. P. 3438 ל 3454.
26. Hassan, C.M., Peppas, N.A. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Advances in Polymer Science. 2000. 153. P. 37 – 65.
27. Podorozhko E.A., Buzin M.I., Golubev E.K., Shcherbina M.A., Lozinsky V.I. A study of cryostructuring of polymer systems. 59. Effect of cryogenic treatment of preliminarily deformed poly(vinyl alcohol) cryogels on their physicochemical properties. Colloid Journal. 2021. 83 (5). P. 634 – 641. DOI: 10.1134/S1061933X21050112.
28. Lozinsky V.I., Podorozhko E.A., Nikitina Y.B., Klabukova L.F., Vasil’ev V.G., Burmistrov A.A., Kondrashov Y.G., Vasiliev N.K. A study of cryostructuring of polymer systems. 45. Effect of porosity of dispersed filler on physicochemical characteristics of composite poly(vinyl alcohol) cryogels. Colloid Journal. 2017. 79 (4). P. 497 – 507. DOI: 10.1134/S1061933X17040081.
29. Lozinsky V.I., Savina I.N. A study of cryostructuring of polymer systems: 22. Composite poly(vinyl alcohol) cryogels filled with dispersed particles of various degrees of hydrophilicity/hydrophobicity. Colloid Journal. 2002. 64 (3). P. 336 – 343.
30. Fediuk R., Amran M., Klyuev S., Klyuev A. Increasing the performance of a fiber-reinforced concrete for protective facilities. Fibers. 2021. 9 (11). P. 64.
31. Savina I.N., Lozinsky V.I. A study of cryostructuring of polymer systems: 23. Composite poly(vinyl alcohol) cryogels filled with dispersed particles containing ionogenic groups. Colloid Journal. 2004. 66 (3). P. 343 – 349.
32. Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Zolotareva S., Shchekina N., Shapovalova A., Sabitov L. Phase formation of mortar using technogenic fibrous materials. Case Studies in Construction Materials. 2022. V. 16. P. e01099.
33. Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Sabitov L., Radaykin O., Anciferov S., Kikalishvili D., de Azevedo Afonso R.G., Vatin N. Technogenic fiber wastes for optimizing concrete. Materials. 2022. 15 (14). P. 5058.
2. Matinde E., Simate G.S., Ndlovu S. Mining and metallurgical wastes: A review of recycling and re-use practices. Journal of the Southern African Institute of Mining and Metallurgy. 2018. 118(8). Р. 825 – 844. DOI: 10.17159/2411-9717/2018/v118n8a5
3. Brooks S.J., Escudero-Onate C., Lillicrap A.D. An ecotoxicological assessment of mine tailings from three Norwegian mines. Chemosphere. 2019. 233. P. 818 – 827. DOI: 10.1016/j.chemosphere.2019.06.003
4. García-Lorenzo M.L., Marimón J., Navarro-Hervás M.C., Pérez-Sirvent C., Martínez-Sánchez M.J., Molina-Ruiz J. Impact of acid mine drainages on surficial wasters of an abandoned mining site. Environmental Science and Pollution Research. 2016. 23 (7). P. 6014 – 6023. DOI: 10.1007/s11356-015-5337-2
5. Krechetov P., Chernitsova O., Sharapova A., Terskaya E. Technogenic geochemical evolution of chernozems in the sulfur coal mining areas. Journal of Soils and Sediments. 2019. 19. P. 3139 – 3154. DOI: 10.1007/s11368-018-2010-7
6. Shi P., Zhang Y., Hu Z., Ma K., Wang H., Chai T. The response of soil bacterial communities to mining subsidence in the west China Aeolian sand area. Applied Soil Ecology. 2017. 121. P. 1 – 10. DOI: 10.1016/j.apsoil.2017.09.020
7. Volokitina I., Kolesnikov A., Fediuk R., Klyuev S., Sabitov L., Volokitin A., Zhuniskaliyev T., Kelamanov B., Yessengaliev D., Yerzhanov A., Kolesnikova O. Study of the Properties of Antifriction Rings under Severe Plastic Deformation. Materials. 2022. 15 (7). P. 2584.
8. Amran M., Fediuk R., Klyuev S., Qader D.N. Sustainable development of basalt fiber-reinforced high-strength eco-friendly concrete with a modified composite binder. Case Studies in Construction Materials. 2022. 17. e01550.
9. Fu Z., Xi S. The effects of heavy metals on human metabolism. Toxicology mechanisms and methods. 2019. 30 (3). P. 167 – 176. DOI: 10.1080/15376516.2019.1701594
10. El Machi A., Berdai Y., Mabroum S., Safhi A.E.M., Taha Y., Benzaazoua M., Hakkou R. Recycling of Mine Wastes in the Concrete Industry: A Review. Buildings. 2024. 14(6). P. 1508. DOI: 10.3390/buildings14061508
11. El Machi A., Hakkou R. Implementation of Circular Economy Between Mining and Construction Sectors: A Promising Route to Achieve Sustainable Development Goals. Sustainable Structures and Buildings; Springer: Berlin/Heidelberg, Germany. 2024. P. 51 – 63. DOI:10.1007/978-3-031-46688-5_4
12. Yu H., Zahidi I., Liang D. Sustainable Porous-Insulation Concrete (SPIC) Material: Recycling Aggregates from Mine Solid Waste, White Waste and Construction Waste. Journal of Materials Research and Technology. 2023. 23. P. 5733 – 5745. DOI: 10.1016/j.jmrt.2023.02.181
13. Garcia-Troncoso N., Baykara H., Cornejo M.H., Riofrio A., Tinoco-Hidalgo M., Flores-Rada J. Comparative Mechanical Properties of Conventional Concrete Mixture and Concrete Incorporating Mining Tailings Sands. Case Studies in Construction Materials. 2022. 16. e01031. DOI: 10.1016/j.cscm.2022.e01031
14. Benahsina A., El Haloui Y., Taha Y., Elomari M., Bennouna M.A. Natural Sand Substitution by Copper Mine Waste Rocks for Concrete Manufacturing. Journal of building engineering. 2022. 47. 103817. DOI: 10.1016/j.jobe.2021.103817
15. Oubaha S., El Machi A., Mabroum S., Taha Y., Benzaazoua M., Hakkou R. Recycling of Phosphogypsum and Clay By-Products from Phosphate Mines for Sustainable Alkali-Activated Construction Materials. Construction and Building Materials. 2024. 411. 134262. DOI: 10.1016/j.conbuildmat.2023.134262.
16. González J.S., Boadella I.L., Gayarre F.L., Pérez C.L.C., López M.S., Stochino F. Use of Mining Waste to Produce Ultra-High-Performance Fibre-Reinforced Concrete. Materials. 2020. 13. DOI: 10.3390/ma13112457.
17. Yu H., Zahidi I., Fai C.M., Liang D., Madsen D.Ø. Mineral waste recycling, sustainable chemical engineering, and circular economy. Results in Engineering. 2024. 21. 101865. DOI: 10.1016/j.rineng.2024.101865
18. Kongar-Syuryun Ch., Ivannikov A., Khayrutdinov A., Tyulyaeva Y. Geotechnology using composite materials from man-made waste is a paradigm of sustainable development. Materials today: proceedings. 2021. 38(4). P. 2078-2082. DOI: 10.1016/j.matpr.2020.10.145.
19. Mikheeva I.V., Androkhanov V.A. Physical properties of technosols at brown coal mine wastes in Eastern Siberia. Soil and Tillage Research. 2022. 217. P. 105264. DOI: 10.1016/j.still.2021.105264
20. Lozinsky V.I. Cryotropic gelation of poly(vinyl alcohol) solutions. Russian Chemical Reviews. 1998. 67 (7). P. 573 – 586.
21. Lozinsky V.I., Okay O. Basic principles of cryotropic gelation. Advances in Polymer Science. 2014. 263. P. 49 – 102. DOI: 10.1007/978-3-319-05846-7_2.
22. Lozinsky V.I., Damshkaln L.G., Shaskol'Skii B.L., Babushkina T.A., Kurochkin I.N., Kurochkin I.I. A Study of cryostructuring of polymer systems: 27. Physicochemical properties of poly(vinyl alcohol) cryogels and specific features of their macroporous morphology. Colloid Journal. 2007. 69 (6). P. 747 – 764.
23. Lozinsky V.I., Damshkaln L.G., Kurochkin I.N., Kurochkin I.I. A Study of cryostructuring of polymer systems. 33. Effect of rate of chilling aqueous poly(vinyl alcohol) solutions during their freezing on physicochemical properties and porous structure of resulting cryogels. Colloid Journal. 2012. 74 (3). P. 319 – 327.
24. Trieu H.H., Qutubuddin S. Poly(vinyl alcohol) hydrogels. 1 .Microscopic structure by freeze-etching and critical point drying techniques. Colloid and Polymer Science. 1994. 272. P. 301 – 309.
25. Willcox P.J., Howie D.W., Schmidt-Rohr K., Hoagland D.A., Gido S.P., Pudjijanto S., Kleiner L.W., Venkatraman S. Microstructure of Poly(Vinyl Alcohol) Hydrogels Produced by Freeze/Thaw Cycling. Journal of Polymer Science. Part B: Polymer Physics. 1999. 37. P. 3438 ל 3454.
26. Hassan, C.M., Peppas, N.A. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Advances in Polymer Science. 2000. 153. P. 37 – 65.
27. Podorozhko E.A., Buzin M.I., Golubev E.K., Shcherbina M.A., Lozinsky V.I. A study of cryostructuring of polymer systems. 59. Effect of cryogenic treatment of preliminarily deformed poly(vinyl alcohol) cryogels on their physicochemical properties. Colloid Journal. 2021. 83 (5). P. 634 – 641. DOI: 10.1134/S1061933X21050112.
28. Lozinsky V.I., Podorozhko E.A., Nikitina Y.B., Klabukova L.F., Vasil’ev V.G., Burmistrov A.A., Kondrashov Y.G., Vasiliev N.K. A study of cryostructuring of polymer systems. 45. Effect of porosity of dispersed filler on physicochemical characteristics of composite poly(vinyl alcohol) cryogels. Colloid Journal. 2017. 79 (4). P. 497 – 507. DOI: 10.1134/S1061933X17040081.
29. Lozinsky V.I., Savina I.N. A study of cryostructuring of polymer systems: 22. Composite poly(vinyl alcohol) cryogels filled with dispersed particles of various degrees of hydrophilicity/hydrophobicity. Colloid Journal. 2002. 64 (3). P. 336 – 343.
30. Fediuk R., Amran M., Klyuev S., Klyuev A. Increasing the performance of a fiber-reinforced concrete for protective facilities. Fibers. 2021. 9 (11). P. 64.
31. Savina I.N., Lozinsky V.I. A study of cryostructuring of polymer systems: 23. Composite poly(vinyl alcohol) cryogels filled with dispersed particles containing ionogenic groups. Colloid Journal. 2004. 66 (3). P. 343 – 349.
32. Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Zolotareva S., Shchekina N., Shapovalova A., Sabitov L. Phase formation of mortar using technogenic fibrous materials. Case Studies in Construction Materials. 2022. V. 16. P. e01099.
33. Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Sabitov L., Radaykin O., Anciferov S., Kikalishvili D., de Azevedo Afonso R.G., Vatin N. Technogenic fiber wastes for optimizing concrete. Materials. 2022. 15 (14). P. 5058.
Pankov P.P., Bespolitov D.V., Konovalova N.A., Razmakhnin K.K., Shavanov N.D. Structure formation of composite materials based on technogenic soil modified by additives of high-molecular compounds. Construction Materials and Products. 2025. 8 (2). 3. https://doi.org/10.58224/2618-7183-2025-8-2-3