Sustainable composites based on gypsum man-made stone are produced using a technology that excludes the firing stage. It meets the requirements for resource and energy conservation, does not harm the environment and can be used in the production of a number of biopositive building materials. The use of pure dihydrate gypsum from gypsum mold waste in the composition of sustainable gypsum composites predetermines the expansion of the scope of application of materials and products based on it. These wastes are characterized by stable physicochemical and mechanical properties. However, the features of the mineralogical composition require high costs for their use in the production of fired gypsum binders using classical technologies. Binders based on them have low strength and other physical indicators. Application without firing technology allows for the maximum use of all the unique properties of gypsum – creation of a comfortable environment, high resistance in fire conditions, good insulating characteristics, etc. By introducing highly dispersed basalt dust particles into the composition of stable gypsum composites based on dihydrate gypsum, gypsum stone is reinforced and compacted at the micro- and nanoscale levels. This is facilitated by the optimal values of the pressing force and humidity of the raw mix selected during the study. They are important technological parameters. The resulting high-strength gypsum composite is characterized by a fine-crystalline structure with higher performance indicators than conventional gypsum materials due to the screening of the moisture effect on it.
1. Litvinenko V.S., Tcvetkov P., Molodtsov K.V. The social and market mechanism of sustainable development of public companies in the mineral resource sector. Eurasian Mining 2020. 1. P. 36 – 41.
2. Fediuk R., Yushin A. Composite binders for concrete with reduced permeability. IOP Conference Series-Materials Science and Engineering. 2016. 116. P. 012021. DOI: 10.1088/1757-899X/116/1/012021.
3. Duan S., Liao H., Cheng F., Song H., Yang H. Investigation into the synergistic effects in hydrated gelling systems containing fly ash, desulfurization gypsum and steel slag. Construction and Building Materials. 2018. 187. P. 1113 – 1120.
4. Da Costa M.C.A., Porangaba M.A.O., Melo N.M.M., Ghislandi M.G. Hide Gypsum casting plaster reinforced with graphene oxide nanofillers. Journal of Materials in Civil Engineering 2024. 37 (1).
5. Chen H., Soles J.A., Malhotra V.M. Investigations of supplementary cementing materials for reducing alkali-aggregate reactions. Cement and Concrete Composites. 1993. 15. P. 75 – 85.
6. Kalabina D., Yakovlev G.I., Saidova Z., Pervushin G., Gordina A.F. Effect of carbon-containing additives on the properties of fluoroanhydrite compositions used for flooring. Key engineering materials. 2022. 932. P. 219 – 224.
7. Cao J., Chung D.D.L. Colloidal graphite as an admixture in cement and as a coating on cement for electromagnetic interference shielding. Cement and Concrete Research. 2003. 33. P. 1737 – 1740.
8. Kalabina D.A., Yakovlev G.I., Dufek Z., Pervushin G.N., Bazhenov K.A., Troshkova V.V. Fluoroanhydrite compositions plasticized by polycarboxylate esters. Engineering Structures and Technologies. 2019. 11(3). P. 101–105.
9. Yakovlev G., Polyanskikh I., Gordin A A., Khozin V., Keriene J., Petrova T. Utilization of blast furnace flue dust while modifying gypsum binders with carbon nanostructures. International Conference on Environmental Engineering (ICEE) 2014. 2014.025
10. Fediuk R., Amran M., Klyuev S., Klyuev A. Increasing the performance of a fiber-reinforced concrete for protective facilities. Fibers. 2021. 9 (11). 64.
11. Grishina A.N., Korolev E.V., Satyukov A.B. Radiation-protective composite binder extended with barium hydrosilicates. Advanced Materials Research. 2014. 1040. P. 351 – 355.
12. Tokarev Y., Ginchitsky E., Sychugov S., Krutikov V., Yakovlev G., Buryanov A., Senkov S. Modification of gypsum binders by using carbon nanotubes and mineral additives. Modern building materials, structures and techniques. 2017. 172. P. 1161 – 1168.
13. Amran M., Fediuk R., Klyuev S., Qader D.N. Sustainable development of basalt fiber-reinforced high-strength eco-friendly concrete with a modified composite binder. Case Studies in Construction Materials. 2022. 17. e01550.
14. Voloshin V.P., Naberukhin Yu.I., Medvedev.N. Can various classes of atomic configurations (Delaunay Simplices) be distinguished in random dense packings of spherical particles? Molecular Simulation. 1989. 4(4). P. 209 – 227.
15. Petropavlovskaya V.В., Zavad’ko M.Yu., Novichenkova T.B., Petropavlovskii K.S., Buryanov A.F. Gypsum modified compositions with the use of activated basalt filler. Construction Materials. 2020. 7. P. 10 – 17.
16. Petropavlovskii K., Novichenkova T., Petropavlovskaya V., Sulman M., Fediuk R., Amran M. Faience waste for the production of wall products. Materials. 2021.14(21). P. 6677.
17. Petropavlovskaya V.B., Novichenkova T.B., Buryanov A.F., Petropavlovskii K.S. Gypsum composites with glass granules. IOP Conference Series-Materials Science and Engineering. 2020. 896. P. 012079.
18. De Macedo R.Q., Ferreira R.T.L., Guedes J.M., Donadon M.V. Intraply failure criterion for unidirectional fiber reinforced composites by means of asymptotic homogenization. Compos. Struct. 2017. 159. P. 335 – 349.
19. Zhu C., Zhang J., Peng J., Cao W., Liu J. Physical and mechanical properties of gypsum-based composites reinforced with PVA and PP fibers. Constr. Build. Mater. 2018. 163. P. 695 – 705.
20. Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Zolotareva S., Shchekina N., Shapovalova A., Sabitov L. Phase formation of mortar using technogenic fibrous materials. Case Studies in Construction Materials. 2022. V. 16. P. e01099.
21. Petropavlovskaya V., Zavad’Ko M.Yu, Novichenkova T., Petropavlovskii K., Sulman M.G. The Use of aluminosilicate ash microspheres from waste ash and slag mixtures in gypsum-lime compositions. Materials. 2023. 16(12). P. 4213.
22. Wang Y., Mao X., Chen C., Wang W., Dang W. Effect of sulfuric acid concentration on morphology of calcium sulfate hemihydrate crystals. Materials Research Express. 2020. 7(10). P. 105501.
23. Pan Z.Y., Lou Y., Yang G.Y. Preparation of calcium sulfate dehydrate and calcium sulfate hemihydrate with controllable crystal morphology by using ethanol additive. Ceram. Int. 2013. 39. P. 5495 – 4502.
24. Rabizadeh T., Stawski T.M., Morgan D.J. The effects of inorganic additives on the nucleation and growth kinetics of calcium sulfate dihydrate crystals. Crystal Growth & Design. 2017. 17. P. 582 – 589.
25. Brunello V., Bersani D., Rampazzi L., Sansonetti A., Tedeschi C. Gypsum based mixes for conservation purposes: evaluation of microstructural and mechanical features. Materiales de Construcción. 2020. 70(337). P. 207.
26. Yldzel S.A. Material Properties of Basalt-Fiber-Reinforced Gypsum-Based Composites Made with Metakaolin and Silica Sand. Mech. Compos. Mater. 2020. 56. P. 379 – 388.
27. Buryanov A.F., Petropavlovskii K.S., Petropavlovskaya V.B., Novichenkova T.B. Formation of the spatial structure of a condensed system of calcium sulphate dehydrate. Journal of Physics: Conference Series. International Scientific Conference on Modelling and Methods of Structural Analysis. 2019. P. 012194.
28. Vimmrová A., Keppert M., Svoboda L., Černý R. Lightweight gypsum composites: Design strategies for multi-functionality. Cement and Concrete Composites. 2011. 1(33). P. 84 – 89.
29. Plugin A., Iefimenko A., Borziak O., Gevorkyan E., Pluhin O. Establishing patterns in the influence of micro- and nano-dispersed mineral additives on the water resistance of construction gypsum. Eastern-European Journal of Enterprise Technologies. 2021. 1(109). P. 22 – 29.
30. Gencel O., Juan Jose del Coz Diaz, Sutcu M., Koksal F., Álvarez Rabanal F.P., Martínez-Barrera G. A novel lightweight gypsum composite with diatomite and polypropylene fibers. Construction and Building Materials. 2016. 113. P. 732 – 740.
31. Domanskaya I., Petropavlovskaya V., Novichenkova T., Petropavlovskii K. Fediuk R. Potential of gypsum-based matrices for sustainable composite materials: A comprehensive review. JOM. 2025. 77. P. 2367 – 2382. DOI:10.1007/s11837-025-07184-7
32. Amran M., Fediuk R., Klyuev S., Qader D.N. Sustainable development of basalt fiber-reinforced high-strength eco-friendly concrete with a modified composite binder. Case Studies in Construction Materials. 2022. 17. e01550
33. Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Sabitov L., Radaykin O., Anciferov S., Kikalishvili D., de Azevedo Afonso R.G., Vatin N. Technogenic fiber wastes for optimizing concrete. Materials. 2022. V. 15(14). P. 5058.
34. Tolstoy A., Lesovik V., Fediuk R., Amran M., Gunasekaran M., Vatin N., Vasilev Y. Production of Greener High-Strength Concrete Using Russian Quartz Sandstone Mine Waste Aggregates. Materials. 2020. 13(23). P. 5575. DOI: 10.3390/ma13235575
2. Fediuk R., Yushin A. Composite binders for concrete with reduced permeability. IOP Conference Series-Materials Science and Engineering. 2016. 116. P. 012021. DOI: 10.1088/1757-899X/116/1/012021.
3. Duan S., Liao H., Cheng F., Song H., Yang H. Investigation into the synergistic effects in hydrated gelling systems containing fly ash, desulfurization gypsum and steel slag. Construction and Building Materials. 2018. 187. P. 1113 – 1120.
4. Da Costa M.C.A., Porangaba M.A.O., Melo N.M.M., Ghislandi M.G. Hide Gypsum casting plaster reinforced with graphene oxide nanofillers. Journal of Materials in Civil Engineering 2024. 37 (1).
5. Chen H., Soles J.A., Malhotra V.M. Investigations of supplementary cementing materials for reducing alkali-aggregate reactions. Cement and Concrete Composites. 1993. 15. P. 75 – 85.
6. Kalabina D., Yakovlev G.I., Saidova Z., Pervushin G., Gordina A.F. Effect of carbon-containing additives on the properties of fluoroanhydrite compositions used for flooring. Key engineering materials. 2022. 932. P. 219 – 224.
7. Cao J., Chung D.D.L. Colloidal graphite as an admixture in cement and as a coating on cement for electromagnetic interference shielding. Cement and Concrete Research. 2003. 33. P. 1737 – 1740.
8. Kalabina D.A., Yakovlev G.I., Dufek Z., Pervushin G.N., Bazhenov K.A., Troshkova V.V. Fluoroanhydrite compositions plasticized by polycarboxylate esters. Engineering Structures and Technologies. 2019. 11(3). P. 101–105.
9. Yakovlev G., Polyanskikh I., Gordin A A., Khozin V., Keriene J., Petrova T. Utilization of blast furnace flue dust while modifying gypsum binders with carbon nanostructures. International Conference on Environmental Engineering (ICEE) 2014. 2014.025
10. Fediuk R., Amran M., Klyuev S., Klyuev A. Increasing the performance of a fiber-reinforced concrete for protective facilities. Fibers. 2021. 9 (11). 64.
11. Grishina A.N., Korolev E.V., Satyukov A.B. Radiation-protective composite binder extended with barium hydrosilicates. Advanced Materials Research. 2014. 1040. P. 351 – 355.
12. Tokarev Y., Ginchitsky E., Sychugov S., Krutikov V., Yakovlev G., Buryanov A., Senkov S. Modification of gypsum binders by using carbon nanotubes and mineral additives. Modern building materials, structures and techniques. 2017. 172. P. 1161 – 1168.
13. Amran M., Fediuk R., Klyuev S., Qader D.N. Sustainable development of basalt fiber-reinforced high-strength eco-friendly concrete with a modified composite binder. Case Studies in Construction Materials. 2022. 17. e01550.
14. Voloshin V.P., Naberukhin Yu.I., Medvedev.N. Can various classes of atomic configurations (Delaunay Simplices) be distinguished in random dense packings of spherical particles? Molecular Simulation. 1989. 4(4). P. 209 – 227.
15. Petropavlovskaya V.В., Zavad’ko M.Yu., Novichenkova T.B., Petropavlovskii K.S., Buryanov A.F. Gypsum modified compositions with the use of activated basalt filler. Construction Materials. 2020. 7. P. 10 – 17.
16. Petropavlovskii K., Novichenkova T., Petropavlovskaya V., Sulman M., Fediuk R., Amran M. Faience waste for the production of wall products. Materials. 2021.14(21). P. 6677.
17. Petropavlovskaya V.B., Novichenkova T.B., Buryanov A.F., Petropavlovskii K.S. Gypsum composites with glass granules. IOP Conference Series-Materials Science and Engineering. 2020. 896. P. 012079.
18. De Macedo R.Q., Ferreira R.T.L., Guedes J.M., Donadon M.V. Intraply failure criterion for unidirectional fiber reinforced composites by means of asymptotic homogenization. Compos. Struct. 2017. 159. P. 335 – 349.
19. Zhu C., Zhang J., Peng J., Cao W., Liu J. Physical and mechanical properties of gypsum-based composites reinforced with PVA and PP fibers. Constr. Build. Mater. 2018. 163. P. 695 – 705.
20. Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Zolotareva S., Shchekina N., Shapovalova A., Sabitov L. Phase formation of mortar using technogenic fibrous materials. Case Studies in Construction Materials. 2022. V. 16. P. e01099.
21. Petropavlovskaya V., Zavad’Ko M.Yu, Novichenkova T., Petropavlovskii K., Sulman M.G. The Use of aluminosilicate ash microspheres from waste ash and slag mixtures in gypsum-lime compositions. Materials. 2023. 16(12). P. 4213.
22. Wang Y., Mao X., Chen C., Wang W., Dang W. Effect of sulfuric acid concentration on morphology of calcium sulfate hemihydrate crystals. Materials Research Express. 2020. 7(10). P. 105501.
23. Pan Z.Y., Lou Y., Yang G.Y. Preparation of calcium sulfate dehydrate and calcium sulfate hemihydrate with controllable crystal morphology by using ethanol additive. Ceram. Int. 2013. 39. P. 5495 – 4502.
24. Rabizadeh T., Stawski T.M., Morgan D.J. The effects of inorganic additives on the nucleation and growth kinetics of calcium sulfate dihydrate crystals. Crystal Growth & Design. 2017. 17. P. 582 – 589.
25. Brunello V., Bersani D., Rampazzi L., Sansonetti A., Tedeschi C. Gypsum based mixes for conservation purposes: evaluation of microstructural and mechanical features. Materiales de Construcción. 2020. 70(337). P. 207.
26. Yldzel S.A. Material Properties of Basalt-Fiber-Reinforced Gypsum-Based Composites Made with Metakaolin and Silica Sand. Mech. Compos. Mater. 2020. 56. P. 379 – 388.
27. Buryanov A.F., Petropavlovskii K.S., Petropavlovskaya V.B., Novichenkova T.B. Formation of the spatial structure of a condensed system of calcium sulphate dehydrate. Journal of Physics: Conference Series. International Scientific Conference on Modelling and Methods of Structural Analysis. 2019. P. 012194.
28. Vimmrová A., Keppert M., Svoboda L., Černý R. Lightweight gypsum composites: Design strategies for multi-functionality. Cement and Concrete Composites. 2011. 1(33). P. 84 – 89.
29. Plugin A., Iefimenko A., Borziak O., Gevorkyan E., Pluhin O. Establishing patterns in the influence of micro- and nano-dispersed mineral additives on the water resistance of construction gypsum. Eastern-European Journal of Enterprise Technologies. 2021. 1(109). P. 22 – 29.
30. Gencel O., Juan Jose del Coz Diaz, Sutcu M., Koksal F., Álvarez Rabanal F.P., Martínez-Barrera G. A novel lightweight gypsum composite with diatomite and polypropylene fibers. Construction and Building Materials. 2016. 113. P. 732 – 740.
31. Domanskaya I., Petropavlovskaya V., Novichenkova T., Petropavlovskii K. Fediuk R. Potential of gypsum-based matrices for sustainable composite materials: A comprehensive review. JOM. 2025. 77. P. 2367 – 2382. DOI:10.1007/s11837-025-07184-7
32. Amran M., Fediuk R., Klyuev S., Qader D.N. Sustainable development of basalt fiber-reinforced high-strength eco-friendly concrete with a modified composite binder. Case Studies in Construction Materials. 2022. 17. e01550
33. Klyuev S., Fediuk R., Ageeva M., Fomina E., Klyuev A., Shorstova E., Sabitov L., Radaykin O., Anciferov S., Kikalishvili D., de Azevedo Afonso R.G., Vatin N. Technogenic fiber wastes for optimizing concrete. Materials. 2022. V. 15(14). P. 5058.
34. Tolstoy A., Lesovik V., Fediuk R., Amran M., Gunasekaran M., Vatin N., Vasilev Y. Production of Greener High-Strength Concrete Using Russian Quartz Sandstone Mine Waste Aggregates. Materials. 2020. 13(23). P. 5575. DOI: 10.3390/ma13235575
Petropavlovskaya V.B., Novichenkova T.B., Petropavlovskii K.S., Motylev R.V., Shipilova N.A., Klyuev S.V. Sustainable gypsum composites reinforced with basalt technogenic nanofiber. Construction Materials and Products. 2025. 8 (2). 2. https://doi.org/10.58224/2618-7183-2025-8-2-2

Русский
English