Pudovkin A.N.

Candidate of Engineering Sciences (Ph.D.), Associate Professor of Building Constructions Department, Ufa State Petroleum Technological University, Russia

The effect of the temperature difference in the thickness of three-layer reinforced concrete enclosing structures in the operational stage on their stress-strain state

https://doi.org/10.58224/2618-7183-2025-8-1-5
Аннотация
In three-layer reinforced concrete structures, the inner and outer layers of concrete of different physical and mechanical characteristics have different coefficients of thermal conductivity and linear temperature deformation. During the operation of buildings and structures, due to the temperature difference in the thickness of the structure along the contact planes of the layers, shear stresses may occur, which leads to bending of the structure, an increase in its deflections and a decrease in crack resistance. In this regard, when designing and calculating such structures, it is necessary to take into account the operational stresses and deflections caused by the temperature difference in the thickness of the enclosing structure.
Taking into account the fact that the cross-section of three-layer enclosing structures with a monolithic connection of layers includes various types of concrete and reinforcement, differing in the values of the initial modulus of elasticity, to solve the problem, the cross-section of the enclosing structure is reduced to a homogeneous one corresponding to the largest initial modulus of elasticity of the concrete of the outer layers.
Studies have been carried out to identify the effect of the thickness of the enclosing structure on the change in deflection, depending on the temperature difference, and its share in the total deflection of the structure. Despite the fact that the calculation results revealed a slight increase in the total deflection, taking into account the proportion of deflection that depends on the temperature difference, the study allows us to increase the accuracy of the calculation. The tendency to reduce the material consumption of structures and, consequently, a decrease in the thickness of the structure can lead to an increase in the proportion of deflection, depending on the temperature difference, which must be taken into account when choosing design solutions.
PDF

Dry mixes on gypsum and mixed bases in the construction of low-rise residential buildings using 3D printing technology

https://doi.org/10.58224/2618-7183-2023-6-6-5
Аннотация
3D-printed building construction technology is developing in most countries, such as France, China, Russia and others, and the dry mixes and equipment used are being improved. The development of 3D-printing construction technology is dictated by its many advantages: architectural diversity, speed and automation of the technological process of construction of buildings and structures with a noticeable reduction in the cost of production. However, there are a number of problems of this technology that are waiting for optimal solutions. The paper proposes solutions to two such problems: firstly, the choice of mixture with gypsum and gypsum-cement binders, ensuring the continuity of the 3D printing process of the building and allowing the construction of buildings up to three floors with sufficient safety margin, high seismic stability, as well as with good heat and noise insulation; secondly, the design of buildings with a rational structural and technological solution of the roof and floor, allowing the interface of these structures with load-bearing printed walls.
Different compositions of dry mixes were tested in a series of field tests of large-sized wall blocks made with the use of a construction 3D-printer and filled with especially light porous expanded claydite, expanded clay concrete or heat-insulating foam gypsum with subsequent testing on press equipment of increased load-carrying capacity (with determination of bearing capacity and deformability of the large-sized block).
When designing low-rise buildings, erected by additive technology, as an optimal design of floors, it is proposed to use frame-monolithic beam structures made of metal thin-walled steel galvanized profiles, filled with foam gypsum mix, providing heat and noise insulation and covered with a thin layer of high-strength self-leveling gypsum mix, providing the necessary structural strength of the floor and, accordingly, the minimum load on the foundation.
PDF