Development of geopolymer binders
Аннотация
The scale of consumption of raw materials is large, and to a greater extent, it is the building materials industry that has a detrimental effect on the environment, thereby disturbing the pristine appearance and landscape of nature. Production volumes of Portland cement clinker have exceeded the mark of 5 billion tons per year. But the key dilemma lies in the emission of greenhouse gases, because during the high-temperature processing of raw materials to produce clinker, carbon dioxide, methane and nitrous oxide are released into the atmosphere.
At the same time, slag-alkali and geopolymer binders can be considered as an alternative to resource-intensive Portland cement; they have found practical application in many developed countries of the world. A large backlog of research has allowed the authors of the work to model materials of both technogenic and natural origin “technogenic reaction powder – natural component – alkaline activator” in one binder system. Microanalysis confirmed the effectiveness of the integrated use of sodium silicofluoride and finely dispersed bentonite additives in the binder system, which had a beneficial effect on the pore structure of the stone and the properties of the cement stone.
Using a properly designed binder composition “aspiration dust – finely dispersed bentonite – sodium silicofluoride – alkaline binder”, it is possible to obtain high-quality and durable composites with a low carbon footprint, thereby solving many environmental problems.
At the same time, slag-alkali and geopolymer binders can be considered as an alternative to resource-intensive Portland cement; they have found practical application in many developed countries of the world. A large backlog of research has allowed the authors of the work to model materials of both technogenic and natural origin “technogenic reaction powder – natural component – alkaline activator” in one binder system. Microanalysis confirmed the effectiveness of the integrated use of sodium silicofluoride and finely dispersed bentonite additives in the binder system, which had a beneficial effect on the pore structure of the stone and the properties of the cement stone.
Using a properly designed binder composition “aspiration dust – finely dispersed bentonite – sodium silicofluoride – alkaline binder”, it is possible to obtain high-quality and durable composites with a low carbon footprint, thereby solving many environmental problems.