The article is an attempt to review scientific achievements in the field of obtaining aluminosilicate geopolymers and current research trends in the field of mechanical treatment (mechanical activation or mechanoactivation, as the term is used in the article) of their predecessors. A geopolymer, also referred to in the literature as geopolymer resin and geopolymer cement, is a mineral binder resulting from geopolymerization, the main step of which is the polymerization (or polycondensation) of precursors in an alkaline or acidic medium. This review focuses on geopolymers whose precursors are natural aluminosilicates, i.e., clay minerals, because, firstly, clay minerals are widespread and available worldwide, and secondly, geopolymers based on heat-treated kaolinite (or metakaolin) have a number of advantages that make kaolinite attractive for further study in terms of reducing energy consumption and carbon footprint in their manufacturing. On the other hand, the review considers the potential of mechanoactivation of clay minerals in an air medium and establishes that mechanoactivated kaolin clays have the potential to replace metakaolin.
[1] Geopolymer Institute. What is a geopolymer? Introduction. 2012. URL: http://www.geopolymer.org/science/introduction/
[2] Davidovits J. Talk 1/Part 2 – What is a geopolymer? 2014. URL: http://www.geopolymer.org/conference/webinar/webinars-videos-collection/
[3] Davidovits J. Part 3: AAM are not polymers, so they cannot be called “geopolymers”. 2016. URL: http://www.geopolymer.org/faq/alkali-activated-materials-geopolymers
[4] Davidovits J. State of the Geopolymer R&D 2023. 15th Geopolymer Camp. 2023. URL: https://www.geopolymer.org/conference/gpcamp-2023/
[5] Davidovits J. 30 Years of Successes and Failures in Geopolymer Applications. Market Trends and Potential Breakthroughs. Geopolymer Conference. 2002. 12 p. URL: https://www.geopolymer.org/wp-content/uploads/30YearsGEOP.pdf
[6] Davidovits J. Environmental implications of Geopolymers. 2015. URL: https://www.materialstoday.com/polymers-soft-materials/features/environmental-implications-of-geopolymers
[7] Shapakidze E.V., Avaliani M.A., Nadirashvili M.R., Maisuradze V.N., Gedzhadze I.V., Petriashvili T.T. Variations on the theme: Inorganic polymers (geopolymers) and ability of their modification. International Scientific Conference on the “Natural and Synthetic Polymers for Medical and Technical Purposes”. 2021. DOI: 10.13140/RG.2.2.18493.79843
[8] Davidovits J. Solid-Phase Synthesis of a Mineral Blockpolymer by Low Temperature Polycondensation of Alumino-Silicate Polymers: Na-poly(sialate) or Na-PS and Characteristics. IUPAC Symposium on Long-Term Properties of Polymers and Polymeric Materials. 1976. 14 p.
[9] Marsh A., Heath A., Patureau P., Evernden M., Walker P. A mild conditions synthesis route to produce hydrosodalite from kaolinite, compatible with extrusion processing. 2018. 264. P. 125 – 132. DOI: 10.1016/j.micromeso.2018.01.014
[10] Davidovits J. Geopolymer cement review. 2013. URL: https://www.geopolymer.org/library/technical-papers/21-geopolymer-cement-review-2013/
[11] Flint E.P., Clarke W.F., Newman E.S., Shartsis L., Bishop D.L., Wells L.S. Extraction of alumina from clays and high silica bauxites. Journal of Research of the National Bureau of Standards. 1946. 36. P. 63 – 106. DOI: 10.6028/jres.036.035
[12] Borchert W., Keidel J. Beiträge zur Reaktionsfähigkeit der Silikate bei niedrigen Temperaturen. Heidelberger Beiträge zur Mineralogie und Petrographie. 1947. 1. P. 2 – 16. DOI: 10.1007/BF01112365
[13] Howell P.A. Process for Synthetic Zeolite A. U.S. Patent 3,114,603. 1963.
[14] Besson H., Caillère S., Hénin S. Compte Rendu Académie des Sciences. 1969. T. 269.
[15] Davidovits J. Talk 2/Part 5 – Principles of alumino-silicate geopolymer (29 min.). 2014. URL: https://www.geopolymer.org/conference/webinar/webinar-spring-2014-geopolymer-web-workshop-apr-8-9/
[16] Berg L.C., Demidenko B.A., Reminikova V.I., Nisamov N.S. Non-fired materials based on kaolin, for outside cladding of buildings. Stroitel’nyye materialy (SSSR). 1970. 10. 22 p. (French)
[17] Olsen N. Method of hardening clay at low temperature. German Patent 600, 327. 1934.
[18] Caillère S., Hénin S. Genèse et synthèse des argiles. Actes du colloque international du Centre national de la recherche scientifique (CNRS), organisé à Paris 1961. Publisher: CNRS. 1962. 224 p.
[19] Siffert B., Wey R. Sur la synthèse de la kaolinite h la température ordinaire. Comptes Rendus de l’Académie des Sciences. 1961. 253. P. 142 – 144.
[20] Dennefeld F. Contribution à la synthèse des phyllites alumineuses du type kaolin. Thèse Docteur-Ingénieur. Universite de Strasbourg. 1970. 82 p.
[21] Davidovits J., Sawyer J.L. Early high-strength mineral polymer. Patent US 4,509,985 filed in 1984. 1985.
[22] Davidovits J., Sawyer J.L. Early High-Strength Concrete Composition. Patent EP0153097 filed in 1985. 1989.
[23] Heitzmann R.F., Gravitt B.B., Sawyer J.L. Cement composition curable at low temperatures. Patent US 4,842,649 filed in 1987. 1989.
[24] Davidovits J. Geopolymers: Inorganic Polymeric New Materials. Journal of Thermal Analysis. 1991. 37. P. 1633 – 1656. URL: https://www.geopolymer.org/wp-content/uploads/J_THERMAL.pdf
[25] Commission Européenne. Cost Effective Geopolymeric Cements for Innocuous Stabilization of Toxic Elements. 1994. URL: https://cordis.europa.eu/project/id/BRE20559/fr
[26] Davidovits J., Davidovits R. Poly(sialate-disiloxo)-based geopolymeric cement and production method thereof. Patent US 7,229,491 B1 filed in 2003. 2007.
[27] Davidovits J., Buzzi L., Rocher P., Gimeno D., Marini C., Tocco S. Geopolymeric Cement Based on Low Cost Geologic Materials. Results from the European Research Project GEOCISTEM. 2nd International Conference Géopolymère Proceedings. 1999. P. 83 – 96.
[28] Hermann E., Kunze C., Gatzweiler R., Kiessig G., Davidovits J. Solidification of various radioactive residues by Geopolymere with special emphasis on long-term stability. 2nd International Conference Géopolymère Proceedings. 1999. P. 211 – 228.
[29] Perera D.S., Aly Z., Vance E.R., Mizumo M. Immobilization of Pb in a Geopolymer Matrix. Journal of the American Ceramic Society. 2005. 88/9. P. 2586 – 2588. DOI: 10.1111/j.1551-2916.2005.00438.x
[30] Perera D.S., Vance E.R., Aly Z., Davis J., Nicholson C.L. Immobilization of Cs and Sr in Geopolymers with Si/Al Molar Ratio of∼2. Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries XI. Publisher: The American Ceramic Society. 2006. 176. P. 91 – 96. DOI: 10.1002/9781118407950.ch10
[31] Habert G., d’Espinose de Lacaillerie J.B., Roussel N. An environmental evaluation of geopolymer based concrete production: reviewing current research trends. Journal of Cleaner Production. 2011. 19 (11). P. 1229 – 1238. DOI: 10.1016/j.jclepro.2011.03.012
[32] La Rosa A.D., Recca G., Summerscales J., Latteri A., Cozzo G., Cicala G. Bio-based versus traditional polymer composites: A life cycle assessment perspective. Journal of Cleaner Production. 2014. 74. P. 135 – 144.
[33] Fawer M., Concannon M., Rieber W. Life Cycle Inventories for the Production of Sodium Silicates. Journal of Life Cycle Assessment. 1999. 4. P. 207 – 212. DOI: 10.1007/BF02979498
[34] Weil M., Dombrowski K., Buchwald A. Life-cycle analysis of geopolymers. Geopolymers: Structure, processing, properties and industrial applications. Publisher: Woodhead Publishing Series in Civil and Structural Engineering. 2009. P. 194 – 210. DOI: 10.1533/9781845696382.2.194
[35] Davidovits J. Geopolymer cement to minimize carbon-dioxide greenhouse warming. Ceramic Transactions. 1993. 37 (1). P. 165 – 182.
[36] Davidovits J., Davidovits R., Gasmi A., Volpintesta F. A new series of commercial brands of metakaolins is setting new standards for ceramic-like geopolymer products. 15th Geopolymer Camp. 2023. 7 p.
[37] Davidovits J. Global Warming Impact on the Cement and Aggregates Industries. World Resource Review. 1994. 6 (2). P. 263 – 278.
[38] Ciccioli P., Capitani D., Gualtieri S., Soragni E., Belardi G., Plescia P., Contini G. Mechano-Chemistry of Rock Materials for the Industrial Production of New Geopolymeric Cements. Factories of the Future. Publisher: Springer Cham. 2019. P. 383 – 407.
[39] Davidovits J. Geopolymer Chemistry and Applications, 2nd Edition. Publisher: Institut Géopolymère. 2008. 584 p.
[40] Frost R.L., Makó E., Kristóf J., Horváth E., Kloprogge J.T. Mechanochemical Treatment of Kaolinite. Journal of Colloid and Interface Science. 2001. 239 (2). P. 458 – 466. DOI: 10.1006/jcis.2001.7591
[41] Shahverdi-Shahraki K., Ghosh T., Mahajan K., Ajji A., Carreau P.J. Effect of dry grinding on chemically modified kaolin. Applied Clay Science. 2015. 105 – 106. P. 100-106. DOI: 10.1016/j.clay.2014.12.026
[42] Lapteva E.S., Yusupov T.S., Berger A.S. Physicochemical changes induced by the mechanical activation process. Publisher: Nauka Sibirskoye otdeleniye. 1981. 87 p.
[43] Takahashi H. Effects of Dry Grinding on Kaolin Minerals. II. Kibushi-clay. 1959. P. 245 – 251.
[44] Sugiyama K., Filio J.M., Saito F., Waseda Y. Structural change of kaolinite and pyrophyllite induced by dry grinding. Mineralogical Journal. 1994. 17(1). P. 28 – 41. DOI: 10.2465/minerj.17.28
[45] Maleki Sh., Karimi-Jashni A. Effect of Ball-milling process on the structure of local clay and its adsorption performance for Ni(II) removal. Applied Clay Science. 2017. 137. P. 213 – 224. DOI: 10.1016/j.clay.2016.12.008
[46] Baki V.A., Ke X., Heath A., Calabria-Holley J., Terzi C., Sirin M. The impact of mechanochemical activation on the physicochemical properties and pozzolanic reactivity of kaolinite, muscovite and montmorillonite. Cement and Concrete Research. 2022. 162. 106962. DOI: 10.1016/j.cemconres.2022.106962
[47] Mañosa J., Gómez-Carrera A.M., Svobodova-Sedlackova A., Maldonado-Alameda A., Fernández-Jiménez A., Chimenos J.M. Potential reactivity assessment of mechanically activated kaolin as alternative cement precursor. Applied Clay Science. 2022. 228. 106648. DOI: 10.1016/j.clay.2022.106648
[48] Balczár I., Korim T., Kovács A., Makó É. Mechanochemical and thermal activation of kaolin for manufacturing geopolymer mortars – Comparative study. Ceramics International. 2016. 42 (14). P. 15367 – 15375. DOI: 10.1016/j.ceramint.2016.06.182
[49] Tahmasebi Yamchelou M., Law D., Patnaikuni I., Li J. Alkali activation of mechanically activated low-grade clay. Journal of Sustainable Cement-Based Materials. 2021. 10 (5). P. 272 – 288. DOI: 10.1080/21650373.2020.1838355
[50] Maged A., El‑Fattah H.A., Kamel R.M., Kharbish Sh., Elgarahy A.M. A comprehensive review on sustainable clay‑based geopolymers for wastewater treatment: circular economy and future outlook. Environmental Monitoring and Assessment. 2023. 195. 693. DOI: 10.1007/s10661-023-11303-9/
[2] Davidovits J. Talk 1/Part 2 – What is a geopolymer? 2014. URL: http://www.geopolymer.org/conference/webinar/webinars-videos-collection/
[3] Davidovits J. Part 3: AAM are not polymers, so they cannot be called “geopolymers”. 2016. URL: http://www.geopolymer.org/faq/alkali-activated-materials-geopolymers
[4] Davidovits J. State of the Geopolymer R&D 2023. 15th Geopolymer Camp. 2023. URL: https://www.geopolymer.org/conference/gpcamp-2023/
[5] Davidovits J. 30 Years of Successes and Failures in Geopolymer Applications. Market Trends and Potential Breakthroughs. Geopolymer Conference. 2002. 12 p. URL: https://www.geopolymer.org/wp-content/uploads/30YearsGEOP.pdf
[6] Davidovits J. Environmental implications of Geopolymers. 2015. URL: https://www.materialstoday.com/polymers-soft-materials/features/environmental-implications-of-geopolymers
[7] Shapakidze E.V., Avaliani M.A., Nadirashvili M.R., Maisuradze V.N., Gedzhadze I.V., Petriashvili T.T. Variations on the theme: Inorganic polymers (geopolymers) and ability of their modification. International Scientific Conference on the “Natural and Synthetic Polymers for Medical and Technical Purposes”. 2021. DOI: 10.13140/RG.2.2.18493.79843
[8] Davidovits J. Solid-Phase Synthesis of a Mineral Blockpolymer by Low Temperature Polycondensation of Alumino-Silicate Polymers: Na-poly(sialate) or Na-PS and Characteristics. IUPAC Symposium on Long-Term Properties of Polymers and Polymeric Materials. 1976. 14 p.
[9] Marsh A., Heath A., Patureau P., Evernden M., Walker P. A mild conditions synthesis route to produce hydrosodalite from kaolinite, compatible with extrusion processing. 2018. 264. P. 125 – 132. DOI: 10.1016/j.micromeso.2018.01.014
[10] Davidovits J. Geopolymer cement review. 2013. URL: https://www.geopolymer.org/library/technical-papers/21-geopolymer-cement-review-2013/
[11] Flint E.P., Clarke W.F., Newman E.S., Shartsis L., Bishop D.L., Wells L.S. Extraction of alumina from clays and high silica bauxites. Journal of Research of the National Bureau of Standards. 1946. 36. P. 63 – 106. DOI: 10.6028/jres.036.035
[12] Borchert W., Keidel J. Beiträge zur Reaktionsfähigkeit der Silikate bei niedrigen Temperaturen. Heidelberger Beiträge zur Mineralogie und Petrographie. 1947. 1. P. 2 – 16. DOI: 10.1007/BF01112365
[13] Howell P.A. Process for Synthetic Zeolite A. U.S. Patent 3,114,603. 1963.
[14] Besson H., Caillère S., Hénin S. Compte Rendu Académie des Sciences. 1969. T. 269.
[15] Davidovits J. Talk 2/Part 5 – Principles of alumino-silicate geopolymer (29 min.). 2014. URL: https://www.geopolymer.org/conference/webinar/webinar-spring-2014-geopolymer-web-workshop-apr-8-9/
[16] Berg L.C., Demidenko B.A., Reminikova V.I., Nisamov N.S. Non-fired materials based on kaolin, for outside cladding of buildings. Stroitel’nyye materialy (SSSR). 1970. 10. 22 p. (French)
[17] Olsen N. Method of hardening clay at low temperature. German Patent 600, 327. 1934.
[18] Caillère S., Hénin S. Genèse et synthèse des argiles. Actes du colloque international du Centre national de la recherche scientifique (CNRS), organisé à Paris 1961. Publisher: CNRS. 1962. 224 p.
[19] Siffert B., Wey R. Sur la synthèse de la kaolinite h la température ordinaire. Comptes Rendus de l’Académie des Sciences. 1961. 253. P. 142 – 144.
[20] Dennefeld F. Contribution à la synthèse des phyllites alumineuses du type kaolin. Thèse Docteur-Ingénieur. Universite de Strasbourg. 1970. 82 p.
[21] Davidovits J., Sawyer J.L. Early high-strength mineral polymer. Patent US 4,509,985 filed in 1984. 1985.
[22] Davidovits J., Sawyer J.L. Early High-Strength Concrete Composition. Patent EP0153097 filed in 1985. 1989.
[23] Heitzmann R.F., Gravitt B.B., Sawyer J.L. Cement composition curable at low temperatures. Patent US 4,842,649 filed in 1987. 1989.
[24] Davidovits J. Geopolymers: Inorganic Polymeric New Materials. Journal of Thermal Analysis. 1991. 37. P. 1633 – 1656. URL: https://www.geopolymer.org/wp-content/uploads/J_THERMAL.pdf
[25] Commission Européenne. Cost Effective Geopolymeric Cements for Innocuous Stabilization of Toxic Elements. 1994. URL: https://cordis.europa.eu/project/id/BRE20559/fr
[26] Davidovits J., Davidovits R. Poly(sialate-disiloxo)-based geopolymeric cement and production method thereof. Patent US 7,229,491 B1 filed in 2003. 2007.
[27] Davidovits J., Buzzi L., Rocher P., Gimeno D., Marini C., Tocco S. Geopolymeric Cement Based on Low Cost Geologic Materials. Results from the European Research Project GEOCISTEM. 2nd International Conference Géopolymère Proceedings. 1999. P. 83 – 96.
[28] Hermann E., Kunze C., Gatzweiler R., Kiessig G., Davidovits J. Solidification of various radioactive residues by Geopolymere with special emphasis on long-term stability. 2nd International Conference Géopolymère Proceedings. 1999. P. 211 – 228.
[29] Perera D.S., Aly Z., Vance E.R., Mizumo M. Immobilization of Pb in a Geopolymer Matrix. Journal of the American Ceramic Society. 2005. 88/9. P. 2586 – 2588. DOI: 10.1111/j.1551-2916.2005.00438.x
[30] Perera D.S., Vance E.R., Aly Z., Davis J., Nicholson C.L. Immobilization of Cs and Sr in Geopolymers with Si/Al Molar Ratio of∼2. Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries XI. Publisher: The American Ceramic Society. 2006. 176. P. 91 – 96. DOI: 10.1002/9781118407950.ch10
[31] Habert G., d’Espinose de Lacaillerie J.B., Roussel N. An environmental evaluation of geopolymer based concrete production: reviewing current research trends. Journal of Cleaner Production. 2011. 19 (11). P. 1229 – 1238. DOI: 10.1016/j.jclepro.2011.03.012
[32] La Rosa A.D., Recca G., Summerscales J., Latteri A., Cozzo G., Cicala G. Bio-based versus traditional polymer composites: A life cycle assessment perspective. Journal of Cleaner Production. 2014. 74. P. 135 – 144.
[33] Fawer M., Concannon M., Rieber W. Life Cycle Inventories for the Production of Sodium Silicates. Journal of Life Cycle Assessment. 1999. 4. P. 207 – 212. DOI: 10.1007/BF02979498
[34] Weil M., Dombrowski K., Buchwald A. Life-cycle analysis of geopolymers. Geopolymers: Structure, processing, properties and industrial applications. Publisher: Woodhead Publishing Series in Civil and Structural Engineering. 2009. P. 194 – 210. DOI: 10.1533/9781845696382.2.194
[35] Davidovits J. Geopolymer cement to minimize carbon-dioxide greenhouse warming. Ceramic Transactions. 1993. 37 (1). P. 165 – 182.
[36] Davidovits J., Davidovits R., Gasmi A., Volpintesta F. A new series of commercial brands of metakaolins is setting new standards for ceramic-like geopolymer products. 15th Geopolymer Camp. 2023. 7 p.
[37] Davidovits J. Global Warming Impact on the Cement and Aggregates Industries. World Resource Review. 1994. 6 (2). P. 263 – 278.
[38] Ciccioli P., Capitani D., Gualtieri S., Soragni E., Belardi G., Plescia P., Contini G. Mechano-Chemistry of Rock Materials for the Industrial Production of New Geopolymeric Cements. Factories of the Future. Publisher: Springer Cham. 2019. P. 383 – 407.
[39] Davidovits J. Geopolymer Chemistry and Applications, 2nd Edition. Publisher: Institut Géopolymère. 2008. 584 p.
[40] Frost R.L., Makó E., Kristóf J., Horváth E., Kloprogge J.T. Mechanochemical Treatment of Kaolinite. Journal of Colloid and Interface Science. 2001. 239 (2). P. 458 – 466. DOI: 10.1006/jcis.2001.7591
[41] Shahverdi-Shahraki K., Ghosh T., Mahajan K., Ajji A., Carreau P.J. Effect of dry grinding on chemically modified kaolin. Applied Clay Science. 2015. 105 – 106. P. 100-106. DOI: 10.1016/j.clay.2014.12.026
[42] Lapteva E.S., Yusupov T.S., Berger A.S. Physicochemical changes induced by the mechanical activation process. Publisher: Nauka Sibirskoye otdeleniye. 1981. 87 p.
[43] Takahashi H. Effects of Dry Grinding on Kaolin Minerals. II. Kibushi-clay. 1959. P. 245 – 251.
[44] Sugiyama K., Filio J.M., Saito F., Waseda Y. Structural change of kaolinite and pyrophyllite induced by dry grinding. Mineralogical Journal. 1994. 17(1). P. 28 – 41. DOI: 10.2465/minerj.17.28
[45] Maleki Sh., Karimi-Jashni A. Effect of Ball-milling process on the structure of local clay and its adsorption performance for Ni(II) removal. Applied Clay Science. 2017. 137. P. 213 – 224. DOI: 10.1016/j.clay.2016.12.008
[46] Baki V.A., Ke X., Heath A., Calabria-Holley J., Terzi C., Sirin M. The impact of mechanochemical activation on the physicochemical properties and pozzolanic reactivity of kaolinite, muscovite and montmorillonite. Cement and Concrete Research. 2022. 162. 106962. DOI: 10.1016/j.cemconres.2022.106962
[47] Mañosa J., Gómez-Carrera A.M., Svobodova-Sedlackova A., Maldonado-Alameda A., Fernández-Jiménez A., Chimenos J.M. Potential reactivity assessment of mechanically activated kaolin as alternative cement precursor. Applied Clay Science. 2022. 228. 106648. DOI: 10.1016/j.clay.2022.106648
[48] Balczár I., Korim T., Kovács A., Makó É. Mechanochemical and thermal activation of kaolin for manufacturing geopolymer mortars – Comparative study. Ceramics International. 2016. 42 (14). P. 15367 – 15375. DOI: 10.1016/j.ceramint.2016.06.182
[49] Tahmasebi Yamchelou M., Law D., Patnaikuni I., Li J. Alkali activation of mechanically activated low-grade clay. Journal of Sustainable Cement-Based Materials. 2021. 10 (5). P. 272 – 288. DOI: 10.1080/21650373.2020.1838355
[50] Maged A., El‑Fattah H.A., Kamel R.M., Kharbish Sh., Elgarahy A.M. A comprehensive review on sustainable clay‑based geopolymers for wastewater treatment: circular economy and future outlook. Environmental Monitoring and Assessment. 2023. 195. 693. DOI: 10.1007/s10661-023-11303-9/
Kabirova A.I., Ibragimov R.A., Genç B., Korolev E.V., Kiyamov I.K., Kiyamova L.I. Research trends in the mechanoactivation of clay minerals used in obtaining geopolymers. Construction Materials and Products. 2023. 6 (5). 3. https://doi.org/10.58224/2618-7183-2023-6-5-3