Сабитов Л.С.

Кандидат технических наук, доцент, Казанский (Приволжский) Федеральный университет, Россия

Stress-strain state during the formation of normal cracks in three-layer bendable reinforced concrete elements under the action of longitudinal and transverse forces

https://doi.org/10.58224/2618-7183-2024-7-1-3
Аннотация
Most wall panels in operating multi-storey residential buildings are in a complex stress-strain state under the influence of vertical and horizontal loads, such as their own weight, wind, etc. These features must be taken into account in the calculation in order to ensure operational safety. The combination of vertical and horizontal forces acting simultaneously for three-layer bending elements leads to the fact that the boundary between the compressed and tensile zones not only moves from one layer to another, but also has a different geometric shape depending on the ratio between the vertical and horizontal load. The stress-strain state during the formation of normal cracks in three-layer bendable reinforced concrete elements is caused by the impact on layers of different concretes. The formation of normal cracks occurs due to the achievement of ultimate tensile strength by the most stretched concrete under the influence of external loads. Since three-layer reinforced concrete elements consist of two outer layers (reinforced concrete) and a middle layer (lightweight concrete), when such an element bends, the outer layers are subject to compression, and the middle layer is subject to tension. The boundary of the compressed zone can be located either in one of the outer layers or intersect the middle layer, which falls into both the compressed and stretched zones. To analyze the stress-strain state during the formation of normal cracks, it is necessary to take into account the fol-lowing parameters: geometric characteristics of the element (dimensions and shape of the section, layer thickness, etc.), physical and mechanical properties of concrete (compressive and tensile strength, elastic modulus, Poisson's ratio, crack resistance coefficient, etc.), characteristics of reinforcement (class, diameter, pitch of bars, etc.) and its location in the section.
PDF

Метод расчета массивных элементов конструкций на прочность в общем случае их напряженно-деформированного состояния (кинематический метод)

https://doi.org/10.58224/2618-7183-2023-6-3-5-17
Аннотация
Предложен вариант кинематического метода теории предельного равновесия; рассматриваются массивные элементы конструкций, материал которых, в общем случае, анизотропный.
Принята жесткопластическая модель деформируемого твердого тела. Принято допущение, что массивные элементы конструкций разрушаются путем разделения на части, которые относительно мало деформируются («абсолютно жесткие конечные элементы»,АЖКЭ) и имеют 6 степенней свободы в трехмерном пространстве. Процесс разрушения материала идет по бесконечно тонким обобщенным поверхностям разрушения (ОПР), на которых учитывается работа всех действующих внутренних силовых факторов (ВСФ) – 9-ти сил и 9-ти моментов. Рассмотрены тела из однородных изотропных материалов, сопротивляющихся по-разному растяжению и сжатию. Поверхности прочности в пространстве ВСФ описываются соответствующими параметрическими уравнениями.
С использованием уравнения равновесия в форме Лагранжа и принципа максимума Мизеса, а также предложенных параметрических уравнений предельной поверхности, задача определения минимального значения параметра кинематический возможной нагрузки сведена к стандартной задаче линейного программирования (ЛП), которая решается с использованием симплекс-метода.
PDF

Метод расчета массивных элементов конструкций на прочность в общем случае их напряженно-деформированного состояния (параметрические уравнения поверхности прочности)

https://doi.org/10.58224/2618-7183-2023-6-2-104-120
Аннотация
В механике деформируемого твердого тела различают стержни (один габаритный размер которых существенно больше двух других), пластины и оболочки (один размер которых существенно меньше двух других), массивы (все три размера которых имеют одинаковый порядок). Сложность соответствующих расчетных моделей растет в том же порядке: относительно простыми являются расчетные модели для стержней и стержневых систем, наиболее сложными – расчетные модели для массивных элементов конструкций.
В работе получены параметрические уравнения поверхности прочности в пространстве внутренних силовых факторов (ВСФ) – 9-ти сил и 9-ти моментов для однородных анизотропных тел. Как частные случаи приведены аналогичные уравнения для изотропных тел, по-разному сопротивляющихся растяжению и сжатию, для изотропных тел, одинаково сопротивляющихся растяжению и сжатию. Предложен алгоритм А1 построения искомых сечений поверхностей прочности, заданных параметрическими уравнениями. Предложен алгоритм А2 определения коэффициентов запаса по несущей способности, оставаясь в пространстве ВСФ. Приведены некоторые примеры расчетов, произведенные с использованием предложенных уравнений, алгоритмов и составленных на их основе соответствующих программ для ЭВМ.
Предлагаемый метод расчета массивных тел позволяет реалистичнее оценивать несущую способность массивных элементов конструкций.
PDF

Композиционный анализ: проект памятника III коммунистического интернационала (Башня Татлина)

https://doi.org/10.58224/2618-7183-2023-6-1-74-83
Аннотация
Авторы статьи транслируют информацию об изучении композиционной деятельности архитекторов Советской России 20-х г. XX в. в русле течения «конструктивизм». Изучение объемно-пространственной архитектурной композиции рассматривается авторами, как вычленение из «неделимого целого» (целостность – закон композиции) и «неизменяемого с целью дальнейшего улучшения» (невозможно внести изменения без ухудшения уже созданной, за-вершенной композиции) искусственно созданного объекта - организма универсальных законов и средств. Авторы считают, что изучение высококлассных образцов Наследия на основе вычленения формальных (композиционных) элементов (контраст, пластика, фактура, плоскость – объем, ритм, модульные членения, конструкция, материалы инженерно – строительные, стены, полы, потолки, элементы крепежа и т.д.) из искусственно созданного композиционного организма. Проводимый анализ позволяет развивать композиционное мышление, вкус и учит пони-мать ход и истоки композиционной мысли Мэтра. Изучение формальной (композиционной) сферы Наследия классиков современности и прошлых эпох позволяет выстраивать путь авторской работы над проектом, избегая ошибок и разочарований.
PDF

Композиционный анализ: синтез абстрактной живописи и архитектуры 20-х г. XX в.

https://doi.org/10.58224/2618-7183-2022-5-6-64-74
Аннотация
Авторы транслируют информацию о союзе архитектуры и абстрактной живописи и вычленении, фиксации законов и средств композиции, которые применялись при создании хре-стоматийно известных творческих продуктов архитектуры, живописи, дизайна. В статье анали-зируются предпосылки появления интернационального стиля, легко интегрирующего в любую культурную среду, историческую застройку, благодаря присутствию в продуктах этого направ-ления максимума формальной сферы и почти полного нивелирования содержательной части в искусственно созданной композиционной форме. Изучение высококлассных образцов Насле-дия позволяет развивать вкус и учит понимать ход и истоки композиционной мысли Мэтра. Изучение формальной (композиционной) сферы позволяет выстраивать путь авторской работы над проектом, избегая ошибок и разочарований.
PDF

Универсальные законы композиции (искусственной и природной формы) на примере башни В.Г. Шухова

https://doi.org/10.58224/2618-7183-2022-5-5-29-41
Аннотация
Авторы статьи транслируют информацию об изучении композиционной деятельности инженеров Советской России в русле архитектурного течения «конструктивизм». Изучение, анализ и фиксация в графических изображениях шедевров объемно – пространственной композиции в истории инженерной, научной мысли рассматривается авторами, как вычленение из искусственно созданного объекта – организма универсальных законов и средств. Авторы считают, что изучение, анализ и фиксация в схематическом графическом материале высоко-классных образцов науки, техники, инженерии позволяет развивать композиционное мышле-ние, вкус и учит понимать ход и истоки композиционной мысли в дизайне. Изучение формаль-ной (композиционной) сферы Наследия классиков современности и прошлых эпох позволяет выстраивать путь авторской работы над проектом, избегая ошибок и разочарований.
PDF

РЕЗУЛЬТАТЫ ИСПЫТАНИЙ СБОРНЫХ ПОДКРАНОВЫХ КОНСТРУКЦИЙ НА ВЫНОСЛИВОСТЬ

https://doi.org/10.58224/2618-7183-2022-5-4-39-49
Аннотация
Цель работы состоит в анализе результатов испытаний сборных подкрановых балок на выносливость при циклических испытаниях на специально разработанном стенде. Приводится методика проведения таких испытаний. Указывается на недопустимость эксплуатации стальных подкрановых конструкций с трещинами и важность исследований направленных на повышения выносливости и долговечности подкрановых балок. Доказывается необходимость разработки новых подкрановых балок (различных профилей) для повышения срока безаварийной эксплуатации промышленных зданий (использующие мостовые грузоподъёмные механизмы с тяжелым режимом работы) до 25 лет. Доказывается, что разработанная сборная подкрановая балка обладает повышенными (в сравнении со стандартными) характеристики.
PDF

ТЕХНОЛОГИЧЕСКИЕ ОСОБЕННОСТИ КОНСТРУИРОВАНИЯ СБОРНО-РАЗБОРНОГО ФУНДАМЕНТА ПОД БАШЕННЫЕ СООРУЖЕНИЯ

https://doi.org/10.58224/2618-7183-2022-5-3-17-26
Аннотация
В статье предложен новый тип модульного сборно-разборного железобетонного фундамента под конструкции сооружений башенного типа. Приведено численное моделирование и конструктивные особенности изготовления и монтажа фундамента, реализованного по патенту 2633604 «Сборно-разборный фундамент под опору» под реальную башню высотой 30 метров и мощностью ветроэлектрической установки 150 кВ. Снижение материалоемкости достигается за счёт образования полости в каждом типовом модуле и заполнения её грунтом или любым инертным материалом. Результат предлагаемого решения заключается в повышении несущей способности фундамента в целом, увеличении прочности и жесткости его основных соединений, а также упрощении монтажа в сопоставлении с традиционными подходами к конструированию. Причем модули фундамента, где возникают максимальные напряжения могут быть изготовлены из фибробетона.
PDF

КОЭФФИЦИЕНТ НАДЕЖНОСТИ ПО МАТЕРИАЛУ ДЛЯ ФИБРОБЕТОНА

https://doi.org/10.58224/2618-7183-2022-5-2-51-58
Аннотация
Один из основных параметров метода расчёта строительных конструкций из бетона и фибробетона по предельным состояниям является коэффициент надежности по материалу, который характеризует неоднородность физико-механических свойств материала. В отечественных и зарубежных нормах он принимает постоянное значение 1,3 (получаемое на основе прямых испытаний), либо 1,5 (получаемое на основе косвенных испытаний и применения градуированных зависимостей). Бетонной матрицей для формирования структуры фибробетонов чаще всего служит мелкозернистый бетон с специальными добавками, обладающий большей однородностью в сравнении с тяжёлым бетоном, что не может не сказываться на надежности рассматриваемого композитного материала в целом: коэффициенты запаса для фибробетона должны быть ниже, чем для обычного бетона, что пока не нашло своего отражения в современных нормах по проектированию. Отталкиваясь от интервальных оценок среднего значения прочности предложен новый подход к определению коэффициента надежности по материалу, дифференцированно по 1-й и 2-й группам предельных состояний. Результаты расчётов по предложенным формулам для ранее проведённых испытаний образов стале- и стекло- фибробетона позволили сделать вывод: введение фибры в бетонную матрицу предложенного эффективного композиционного состава повышает однородность прочностных свойств материала, что ведет к повышению надежности его применения в строительных конструкциях, снижению значения коэффициента надежности (запаса) по материалу до 1,164…1,235 для центрального осевого сжатия и до 1,172…1,272 – для центрального осевого растяжения. Полученные фактические коэффициенты в прочностных расчётах позволят вскрыть дополненные резервы несущей способности конструкций из данного материала до 22,4%.
PDF

РАСЧЕТ ВЫСОТНЫХ СООРУЖЕНИЙ ПРИ СЕЙСМИЧЕСКОМ ВОЗДЕЙСТВИИ УРОВНЯ «КОНТРОЛЬНОЕ ЗЕМЛЕТРЯСЕНИЕ» НЕЛИНЕЙНЫМ СТАТИЧЕСКИМ МЕТОДОМ НА ПРИМЕРЕ АДЫГЕЙСКОЙ ВЭС

https://doi.org/10.34031/2618-7183-2020-3-1-14-20
Аннотация
Целью работы является апробация мультимодального нелинейного статического метода при сейсмическом воздействии уровня «Контрольное землетрясение» для высотных сооружений на примере ветроэлектрической установки (ВЭУ) мощностью 1,5-2,0 МВт Адыгейской ВЭС с помощью компьютерного моделирования в ПК Лира 10.10. Дополнительно выполнена верификация полученных результатов в ПК «Ansys». Основным несущим элементом ВУЭ является башня – труба со слабой конусностью, материалом которой является высокопрочная сталь С355. Оценка сейсмостойкости сооружения выполнена в физически и геометрически нелинейных постановках. При этом для стали была использована теория прочности Вон-Мизеса. Сравнение результатов расчёта доказывает эффективность мультимодального нелинейного статического метода. Рассматриваемый метод имеет ряд преимуществ: толерантность к исходным данным в части численного описания сейсмического воздействия, меньшая машиноемкость расчета в сравнении с прямым динамическим методом, возможность полной автоматизации процесса расчета.
PDF