EFFECT OF POROUS STRUCTURE ON SOUND ABSORPTION OF CELLULAR CONCRETE

https://doi.org/10.34031/2618-7183-2020-3-2-5-18
The compositions of gas and foam concrete with improved acoustic characteristics were developed. The optimal form of porosity, which contributes to the absorption of sound waves, both in the range of audible frequencies and at infrasonic and ultrasonic frequencies, is revealed. The mathematical model for designing sound-absorbing concrete was improved, taking into account both the porosity of the composite and the influence of the porous aggregate. The laws of synthesis of aerated concrete and foam concrete are established, which consist in optimizing the processes of structure formation due to the use of a polymineral cement-ash binder and blowing agent. The composition of the composite intensifies the process of hydration of the system, which leads to the synthesis of a polymineral heterodisperse matrix with an open porosity of more than 60%. Peculiarities of the influence of the “Portland cement – aluminosilicate – complex of modifiers” system on the rheology of the concrete mixture was identified, which can significantly reduce shear stress and create easily formed cellular concrete mixtures. The increased activity and granulometry of aluminosilicates predetermine an increase in the number of contacts and mechanical adhesion between particles during compaction, strengthening the frame of inter-pore septa. The mechanism of the influence of the composition of the concrete mixture on the microstructure of the composite is estab-lished. The presence of refined aluminosilicates and a complex of additives in the system along with cement contribute to the synthesis of the matrix with open porosity, thereby increasing the sound absorption coefficient.
1. Bhutta M.A.R, Tsuruta K., Mirza J. Evaluation of high-performance porous concrete properties. Con-struction and Building Materials. 2012. 31. P. 67 – 73.
2. Fedjuk R.S., Mochalov A.V., Lesovik V.S. Sovremennye sposoby aktivacii vjazhushhego i betonnyhh smesej (obzor). Vestnik Inzhenernoj shkoly Dal'nevostochnogo federal'nogo universiteta. 2018. 4 (37). P. 85 – 99. (rus.)
3. Kim H., Hong J., Pyo S. Acoustic characteristics of sound absorbable high performance concrete. Applied Acoustics. 2018. 138. P. 171 – 178.
4. Fedjuk R.S., Timohin R.A., Smoljakov A.K. Nauchnoe liderstvo kitajskih uchenyh v oblasti stroitel'nyh tehnologij. Rossija i Kitaj: problemy strategicheskogo vzaimodejstvija: sbornik Vostochnogo centra. 2017. 19. P. 21 – 24. (rus.)
5. Oancea I., Bujoreanu C., Budescu M., Benchea M., Gradinaru C.M. Considerations on sound absorp-tion coefficient of sustainable concrete with different waste replacements. Journal of Cleaner Production. 2018. 203. P. 301 – 312.
6. Li X., Liu Q., Pei S., Song L., Zhang X. Structure-borne noise of railway composite bridge: Numerical simulation and experimental validation. Journal of Sound and Vibration. 2015. 353. P. 378 – 394.
7. Keränen J., Hakala J., Hongisto V. The sound insulation of façades at frequencies 5-5000 Hz. Building and Environment. 2019. 156. P. 12 – 20.
8. Fedjuk R.S., Smoljakov A.K., Timohin R.A. Stroitel'nye materialy dlja vojskovoj fortifikacii. XVIII Vserossijskaja nauchno-prakticheskaja konferencija molodyh uchenyh, aspirantov i studentov v g. Nerjungri, s mezhdunarodnym uchastiem, posvjashhennoj 25-letiju so dnja obrazovanija Tehnicheskogo instituta (filiala) SVFU Materialy konferencii. Sekcii 1-3. 2017. P. 109 – 113. (rus.)
9. Holmes N, Browne A., Montague C. Acoustic properties of concrete panels with crumb rubber as a fi-ne aggregate replacement. Construction and Building Materials 2014. 73. P. 195 – 204.
10. Cuthbertson D., Berardi U., Briens C., Berruti F. Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties. Biomass and Bioenergy. 2019. 120. P. 77 – 83.
11. Shawnim P., Mohammad F. Compressive strength of foamed concrete in relation to porosity using SEM images. Journal of Civil Engineering, Science and Technology. 2019. 10 (1). P. 34 – 44.
12. Nambiar E.K.K. and Ramamurthy K. Sorption characteristics of foam concrete. Cement and Concrete Research. 2007. 37. P. 1341 – 1347.
13. Khatib J.M., Clay R.M. Absorption characteristics of metakaolin concrete. Cement and Concrete Research. 2004. 34 (1). P. 19 – 29.
14. Jones M.R., Ozlutas K.., Zheng L. High-volume, ultra-low-density fly ash foamed concrete. Magazine of Concrete Research. 2017. 69 (22). P. 1146 – 1156 http://dx.doi.org/10.1680/jmacr.17.00063
15. Just A., Middendorf B. Microstructure of high-strength foam concrete. Matererials Characteristics. 2009. 60 (7). P. 741 – 748.
16. Hamad A.J. Materials, production, properties and application of aerated lightweight concrete: review. International Journal of Materials Science Engineering. 2014. 2 (2). P. 152 – 157.
17. Nambiar E.K., Kunhanandan K. Influence of filler type on the properties of foam concrete. Cement and Concrete Composites. 2006. 28 (5). P. 475 – 480.
18. Wee T.H., Daneti S.B., Tamilselvan T., Lim H.S. Air void system of foamed concrete and its effect on mechanical properties. ACI Materials Journal. 2006. 103 (1). P. 45 – 52.
19. Allard J.F. Propagation of Sound in Porous Media. Elsevier Science. Amsterdam. 1993.
20. Attenborough K. Acoustical impedance models for outdoor ground surfaces. Journal of Sound and Vibration. 1985. 99 (4). P. 521 – 544.
21. Johnson D.L., Koplik J., Dashen R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics. 1987. 176. P. 379 – 402.
22. Stinson M.R., Champoux Y. Propagation of sound and the assignment of shape factors in model po-rous materials having simple pore geometries. Journal of the Acoustical Society of America. 1992. 91 (2). P. 685 – 695.
23. Horoshenkov K.V., Swift M.J. The acoustic properties of granular materials with pore size distribution close to log-normal. Journal of the Acoustical Society of America. 2001. 110 (5). P. 2371 – 2378.
24. Neithalath N., Marolf A., Weiss J., Olek J. Modeling the influence of pore structure on the acoustic absorption of enhanced porosity concrete. Journal of Advanced Concrete Technology. 2005. 3 (1). P. 29 – 40.
25. Jeon J.Y., Hong J.Y,, Kim S.M., Lee P.J. Classification of heavy-weight floor impact sounds in multi-dwelling houses using an equal-appearing interval scale. Building and Environment. 2005. 94. P. 821 – 828.
Fedyuk R.S., Baranov A.V., Mugahed Amran Y.H. Effect of porous structure on sound absorption of cellular concrete. Construction Materials and Products. 2020. 3 (2). P. 5 – 18. https://doi.org/10.34031/2618-7183-2020-3-2-5-18