Keywords: structure

OBTAINING A THERMAL INSULATION LAYER FROM MONOLITHIC NON-AUTOCLAVED STRUCTURAL AND THERMAL INSULATION FIBRE FOAM CONCRETE

https://doi.org/10.34031/2618-7183-2021-4-3-5-22
Abstract
The possibility of obtaining structural and thermal insulation foam concrete of non-autoclave hardening with improved construction and technical characteristics for the device of a thermal insulation layer in the con-struction of road pavement due to three-dimensional dispersed reinforcement with polypropylene fiber is theoretically justified and experimentally confirmed. Based on the results of studies of the influence of technological factors on the properties of foam concrete, the optimal content (up to 0.25% of the cement mass) and the length (12 mm) of reinforcing polypropylene fibers have been established, which allows obtaining high strength indicators of dispersed-reinforced cement stone for bending (an increase of 12-20%) and compression (an increase of 6-12%) compared with non-reinforced cement stone of non-autoclaved foam concrete. The analysis of the process of structure formation of dispersed reinforced foam concrete from the standpoint of a systematic approach based on multifactorial polynomial models of the influence of the ratio of filler and binder, as well as the number of dispersed reinforcing fibers, which is determined by the optimal conditions for the distribution of solid and gas phases, as well as the reinforcement of adjacent interstitial partitions of foam concrete, linking them into one asociate, which ensures the joint work of the material under various external influences. A method was developed to increase the durability of the road surface and eliminate the influence of the frost heaving effect on the quality of the road surface by introducing the necessary amount of effective thermal insulation layer into the road surface design. The analysis of the regularity of the heat transfer process in the soil mass of the roadbed and multilayer road pavement is carried out. Based on the analysis, the values of the necessary resistance to heat transfer of road pavement for the natural and climatic regions of the country are determined and a method for calculating the value of the thermal insulation (frost-proof) layer of road pavement is proposed. A method was developed for calculating the value of the thermal insulation layer using monolithic fibre foam concrete and a nomogram to determine the required value of the thermal insulation layer made of monolithic non-autoclaved structural and thermal insulation fibre foam concrete of classes D600-D1000.
PDF

EFFECT OF POROUS STRUCTURE ON SOUND ABSORPTION OF CELLULAR CONCRETE

https://doi.org/10.34031/2618-7183-2020-3-2-5-18
Abstract
The compositions of gas and foam concrete with improved acoustic characteristics were developed. The optimal form of porosity, which contributes to the absorption of sound waves, both in the range of audible frequencies and at infrasonic and ultrasonic frequencies, is revealed. The mathematical model for designing sound-absorbing concrete was improved, taking into account both the porosity of the composite and the influence of the porous aggregate. The laws of synthesis of aerated concrete and foam concrete are established, which consist in optimizing the processes of structure formation due to the use of a polymineral cement-ash binder and blowing agent. The composition of the composite intensifies the process of hydration of the system, which leads to the synthesis of a polymineral heterodisperse matrix with an open porosity of more than 60%. Peculiarities of the influence of the “Portland cement – aluminosilicate – complex of modifiers” system on the rheology of the concrete mixture was identified, which can significantly reduce shear stress and create easily formed cellular concrete mixtures. The increased activity and granulometry of aluminosilicates predetermine an increase in the number of contacts and mechanical adhesion between particles during compaction, strengthening the frame of inter-pore septa. The mechanism of the influence of the composition of the concrete mixture on the microstructure of the composite is estab-lished. The presence of refined aluminosilicates and a complex of additives in the system along with cement contribute to the synthesis of the matrix with open porosity, thereby increasing the sound absorption coefficient.
PDF

USE OF IRAQ CONCRETE SCRAP AS FILLER AND AGGREGATE OF HEAVYWEIGHT AND LIGHTWEIGHT CONCRETE

https://doi.org/10.34031/2618-7183-2020-3-3-28-39
Abstract
The relevance of the paper is due to the search for alternative sources of raw materials for the construction industry, associated with the disposal of man-made waste. The novelty of the article is to identify the sci-entific laws of the influence of demolition waste on buildings and structures on the formation of the microstructure of lightweight and heavyweight concrete. Concrete waste was prepared as both fillers of cement materials and fine aggregates, based on which concrete with high mechanical properties was created. The mix design was carried out from the point of view of geomimetics, in particular, taking into account the law of affinity of structures. The strength characteristics of concrete mixtures were investigated in accordance with EN 12390-3. In addition, the microstructural, morphological and thermal properties of the raw materials and concrete were determined during 28-day curing. For the first time, the dense microstructure of the composite was ensured, both with Portland cement products and with hydration, and, in part, with hydration products of previously unreacted clinker, whose minerals are present in concrete waste and are activated when they are crushed. The use of demolition waste of buildings and structures as a filler of cementing material when replacing Portland cement up to 20% allows to obtain better compressive strength of both heavyweight and lightweight concrete.
PDF

EFFECT OF MICROFILLERS BASED ON NATURAL WOLLASTONITE ON PROPERTIES OF FINE-GRAINED CONCRETE

https://doi.org/10.34031/2618-7183-2019-2-6-20-28
Abstract
The possibility of obtaining effective highly dispersed additives from natural wollastonite is substantiated and their influence on the properties of fine-grained concrete is investigated. On the basis of wollastonite, a complex micro-filler with particle sizes up to 100 microns was developed, obtained by joint grinding with quartz sand in a 3:1 ratio in a ball mill in the presence of an anionic surfactant naphthalene-formaldehyde type C-3 and a calcium stearate hydrophobizer technical C-17. A suspension of wollastonite with a modal particle diameter of 405 nm was obtained by pre-grinding wollastonite and anionic surfactant in a ball mill, with their further ultrasonic treatment in a bath-type activator. Mathematical models of the dependence of compression and bending strength on the content of the initial components are developed. It is established that the complex microfill leads to an increase in the strength of fine-grained concrete in bending by 2 times, in compression by 1.7 times with its content in the composition of fine-grained concrete in the amount of 10% by weight of cement. Wollastonite suspension increases the bending strength of fine-grained concrete to 3.1 MPa, compression to 57.8 MPa. The results of qualitative x-ray phase analysis showed that the total intensity of diffraction maxima of not fully hydrated alite C3S, belite C2S grains and their aggregates in cement stone with wollastonite decreases by 1.5-2 times compared to the control composition. This is most likely due to the amorphous nature of the wollastonite surface after grinding in a ball mill and ultrasonic dispersion in a bath-type activator. In addition, such particles are the centers of crystallization. Their needle-like shape contributes to the reinforcement of the structure by crystallizing new formations of cement stone.
PDF