EFFECT OF POROUS STRUCTURE ON SOUND ABSORPTION OF CELLULAR CONCRETE
Abstract
The compositions of gas and foam concrete with improved acoustic characteristics were developed. The optimal form of porosity, which contributes to the absorption of sound waves, both in the range of audible frequencies and at infrasonic and ultrasonic frequencies, is revealed. The mathematical model for designing sound-absorbing concrete was improved, taking into account both the porosity of the composite and the influence of the porous aggregate. The laws of synthesis of aerated concrete and foam concrete are established, which consist in optimizing the processes of structure formation due to the use of a polymineral cement-ash binder and blowing agent. The composition of the composite intensifies the process of hydration of the system, which leads to the synthesis of a polymineral heterodisperse matrix with an open porosity of more than 60%. Peculiarities of the influence of the “Portland cement – aluminosilicate – complex of modifiers” system on the rheology of the concrete mixture was identified, which can significantly reduce shear stress and create easily formed cellular concrete mixtures. The increased activity and granulometry of aluminosilicates predetermine an increase in the number of contacts and mechanical adhesion between particles during compaction, strengthening the frame of inter-pore septa. The mechanism of the influence of the composition of the concrete mixture on the microstructure of the composite is estab-lished. The presence of refined aluminosilicates and a complex of additives in the system along with cement contribute to the synthesis of the matrix with open porosity, thereby increasing the sound absorption coefficient.