Study of the Influence of Hydrothermal Treatment Parameters on the Properties of Lightweight Silicate Bricks Using Aluminosilicate Microspheres and Substandard Clay Rocks

https://doi.org/10.58224/2618-7183-2023-6-5-4
This article investigates the influence of various parameters of hydrothermal treatment on the properties of lightweight silicate bricks obtained using substandard clay raw materials, construction lime and aluminosilicate microspheres. It was found that it is possible to obtain products with the required performance characteristics at a minimum hydrothermal treatment pressure of 0.2 MPa. With an increase in pressure to 0.4 MPa, it is possible to reduce the time of isothermal exposure while main-taining the required properties, which helps to reduce the energy intensity of production. The optimal amount of CaO depends on the specific parameters of hydrothermal treatment. So in order to achieve maximum strength indicators, the content of CaO is 10 wt. % at a pressure of 0.2 MPa and 15 wt. % at a pressure of 0.4 MPa, respectively. The addition of aluminosilicate microspheres makes it possible to significantly reduce the average density and obtain a lightweight silicate brick with this indicator from 930 to 1610 kg /m3. The rational time of isothermal exposure, ensuring the formation of a cementing compound of optimal composition, and as a result, obtaining a material with high physical and me-chanical properties at a pressure of 0.2 MPa is 8 hours, and at a pressure of 0.4 MPa is 6 hours. Math-ematical models are proposed for the selection and optimization of lightweight silicate brick compositions based on construction lime, substandard clay rocks and aluminosilicate microspheres.
[1] Amran M., Onaizi A.M., Fediuk R., Danish A., Vatin N.I., Murali G., Abdelgader H.S., Mosaberpanah M.A. Cecchin D., Azevedo A. An ultra-lightweight cellular concrete for geotechnical applications – A review. Case Studies in Construction Materials. 2022. 16. e01096. DOI: https://doi.org/10.1016/j.cscm.2022.e01096
[2] Santa A.C., Gómez M.A., Castaño J.G., Tamayo J.A., Baena L. M. Atmospheric deterioration of ceramic building materials and future trends in the field: a review. Heliyon. 9 (4). 2023. e15028. DOI: https://doi.org/10.1016/j.heliyon.2023.e15028
[3] Murugesan P., Partheeban P., Manimuthu Sh., Jegadeesan V., Christopher Ch.G. Multi-criteria decision analysis for optimum selection of different construction bricks. Journal of Building Engineering. 2023. 71. 106440. DOI: https://doi.org/10.1016/j.jobe.2023.106440
[4] Soleymani A., Najafgholipour M.A., Johari A. An experimental study on the mechanical properties of solid clay brick masonry with traditional mortars. Journal of Building Engineering. 2022. 58. 105057. DOI: https://doi.org/10.1016/j.jobe.2022.105057
[5] Lesovik V.S., Fomina E.V. The new paradigm of designing construction composites to protect the human environment. Bulletin of MSUACE. 2019. 14 (10). P. 1241 – 1257. DOI: 10.22227/1997-0935.2019.10.1241-1257
[6] He Yi., Chu Y., Song Ye., Liu M., Shi Sh., Chen X. Analysis of design strategy of energy efficient buildings based on databases by using data mining and statistical metrics approach. Energy and Buildings. 2022. 258. 111811. DOI: https://doi.org/10.1016/j.enbuild.2021.111811
[7] Makhortov D.S., Zagorodnyuk L.H., Sumskoy D.A., Al Mamouri Saad. Obtaining binder compositions of optimal compositions based on portland cement and ceramic brick waste. Bulletin of BGTU named after V.G. Shuhov. 2022. 7. P. 19 – 30. DOI: 10.34031/2071-7318-2022-7-7-19-30
[8] Alfimova N.I., Pirieva S.Yu., Titenko A.A. Utilization of gypsum-bearing wastes in materials of the construction industry and other areas. Construction Materials and Products. 2021. 4 (1). P. 5 – 17. DOI: 10.34031/2618-7183-2021-4-1-5-17
[9] Tolstoy A., Lesovik V., Fediuk R., Amran M., Gunasekaran M., Vatin N., Vasilev Y. Production of greener high-strength concrete using Russian quartz sandstone mine waste Aggregates. Materials. 2020. 13. 5575. DOI: https://doi.org/10.3390/ma13235575
[10] Klyuev A.V., Kashapov N.F., Klyuev S.V., Lesovik R.V., Ageeva M.S., Fomina E.V. Development of alkali-activated binders based on technogenic fibrous materials. Construction Materials and Products. 2023. 6 (1). P. 60 – 73. DOI: 10.58224/2618-7183-2023-6-1-60-73
[11] Da Silva R.B., Matoski A., Junior A.N., Kostrzewa-Demczuk P. Study of compressive strength of sand-lime bricks produced with coal tailings using mixture design. Construction and Building Materials. 2022. 344. 127986. DOI: https://doi.org/10.1016/j.conbuildmat. 2022. 127986
[12] Nelubova V.V., Strokova V.V. Technology of silicate pressed materials. review of innovations for the development of production. Construction Materials. 2019. 8. P. 6 – 13. DOI: 10.31659/0585-430X-2019-773-8-6-13
[13] Kotlyar V.D., Kozlov A.V., Zhivotkov O.I., Kozlov G.A. Calcium-silicate brick on the basis of microspheres and lime. Construction Materials. 2018. 9. P. 17 – 21. DOI: https://doi.org/10.31659/0585-430X-2018-763-9-17-21
[14] Steshenko, A.B., Kudyakov, A.I. Cement based foam concrete with aluminosilicate microspheres for monolithic construction. Magazine of Civil Engineering. 2018. 84 (8). P. 86 – 96. DOI: 10.18720/MCE.84.9
[15] Chen J.J., Ng P.L., Li L.G., Kwan A.K.H.. Production of High-performance Concrete by Addition of Fly Ash Microsphere and Condensed Silica Fume. Procedia Engineering. 2017. 172. P. 165 – 171 DOI: https://doi.org/10.1016/j.proeng.2017.02.045

[16] Scott N.R., Stoddard D.L., Nelms M.D., Wallace Z., Turner I., Turner L., Croom M., Franklin K., Sandifer S., Ali Al-fahdi M.S., Butler T., Rajendran A.M. Experimental and computational characterization of glass microsphere-cementitious composites. Cement and Concrete Research. 2022. 152. 106671. DOI: https://doi.org/10.1016/j.cemconres.2021.106671
[17] Dachowski R., Komisarczyk K. Determination of Microstructure and Phase Composition of Sand-Lime Brick after Autoclaving Process. Procedia Engineering. 2016. 161. P. 747 – 753. DOI: https://doi.org/10.1016/j.proeng.2016.08.762
[18] Kostrzewa-Demczuk P., Stepien A., Dachowski R., Krugiełka A.The use of basalt powder in autoclaved brick as a method of production waste management. Journal of Cleaner Production. 2021. 320. 128900. DOI: https://doi.org/10.1016/j.jclepro.2021.128900
[19] Volodchenko A.N., Strokova V.V. Development of scientific bases for production of silicate autoclave materials using clay raw materials. Construction Materials. 2018. 9. P. 25 – 31. DOI: https://doi.org/10.31659/0585 430Х-2018-763-9-25-31
[20] Volodchenko A.A., Lesovik V.S., Cherepanova I.A., Volodchenko A.N., Zagorodnjuk L.H., Elistratkin M.Y. Peculiarities of non-autoclaved lime wall materials production using clays. IOP Conf. Series: Materials Science and Engineering. 2018. 022021. DOI: 10.1088/1757-899X/327/2/022021
[21] Volodchenko A.N. Reactivity of magnesia clay with lime under hydrothermal conditions. International Research Journal. 2014. 10-2 (29). P. 7 – 10.
[22] Lesovik V., Volodchenko A., Fediuk R., Timokhin R., Mugahed Amran Y.H. Enhancing performances of clay masonry materials based on nanosize mine waste. Construction and Building Materials.2021. 269. 121333 DOI: 10.1016/j.conbuildmat.2020.121333
[23] Nourredine A., Jauberthie R., Nourredine Ch., Molez L. Formation of C-S-H in calcium hydroxide-blast furnace slag-Quartz-water system In autoclaving conditions. Advances in Cement Research. 2014. 27 (3). P. 153 – 162. DOI: 10.1680/adcr.13.00069
[24] Chen M., Lu L., Wang S., Zhao P., Zhang W., Zhang S. Investigation on the formation of tobermorite in calcium silicate board and its influence factors under autoclaved curing. Construction and Building Materials.2017. 143. P. 280 – 288. DOI: https://doi.org/10.1016/j.conbuildmat.2017.03.143
Volodchenko A.A. Study of the influence of hydrothermal treatment parameters on the properties of lightweight silicate bricks using aluminosilicate microspheres and substandard clay rocks. Construction Materials and Products. 2023. 6 (5). 4. https://doi.org/10.58224/2618-7183-2023-6-5-4