EFFECT OF THE CURING CONDITIONS ON THE CHARACTERISTICS OF CITROGYPSUM-CONTAINING ALKALI-ACTIVATED BINDERS

https://doi.org/10.34031/2618-7183-2021-4-5-24-34
When hardening the binder system and it transforms into a consolidated conglomerate, the efficiency of the formation of the structural framework and the main operational characteristics of the final product dramati-cally depend on the thermal and humidity conditions of the environment medium, where the binder or raw material is consolidated. In this study, various conditions of hardening of binders with alkaline activation of various compositions were studied. Based on the literature analysis, the following were chosen as the hardening conditions for the experimental alkali-activated systems: 1) - thermal drying, which was carried out in an oven at a temperature of 60°C for 24 hours; 2) hardening in ambient laboratory conditions, at a temperature of 23 ± 2°С, relative humidity - 33 ± 2%. An aqueous solution of alkali NaOH and salt Na2SiO3 were used as alkaline activators. The resulted data of the change in the average density showed that when using an alkaline activator, heat drying promotes the compaction of the hardened composite (typical for both types of the alkaline component) by 5 and 7 % for NaOH and Na2SiO3, respectively. The absence of alkaline activators in the experimental samples leads to decompaction of the structure after exposure to thermal drying and a decrease in the average density to 18%. The experimental results showed that thermal drying contributes to an increase in the strength parameters of experimental samples of an alkali-activated binder using Na2SiO3 to 110% (from 1.9 to 4 MPa). For the rest of the samples, a significant decrease in strength is observed (more than 2 times). A visual analysis of experimental samples of alkali-activated binders showed that the binders containing the addition of citrogypsum showed clear signs of efflorescence in the case of their hardening in ambient laboratory conditions. At the same time, for similar compositions from a series of samples hardened under thermal drying conditions, there is a complete absence of this phenomenon.
1. Gluhovskij V.D., Pahomov V.A. SHlakoshchelochnye cementy i betony, «Budivel'nik», Kiev, 1978. 184 p. (rus.)
2. Talling B., Krivenko P. Blast furnace slag-the ultimate binder. Waste Materials Used in Concrete Manufacturing. 1996. P. 235 – 289.
3. Kozhuhova N.I., CHizhov R.V., ZHernovskij I.V., Loganina V.I., Strokova V.V. Osobennosti strukturoobrazovaniya geopolimernoj vyazhushchej sistemy na osnove perlita s ispol'zovaniem razlichnyh vidov shchelochnogo aktivatora. Stroitel'nye materialy. 2016. 3. P. 61 – 64. (rus.)
4. Krivenko P.V., Petropavlovskyi O., Rudenko I., Konstantynovskyi O.P. The influence of complex additive on strength and proper deformations of alkali-activated slag cements. Materials Science Forum. 2019. 968. P. 13 – 19.
5. Kalinkin A.M., Gurevich B.I., Kalinkina E.V., Tyukavkina V.V. SHlaki cvetnoj metallurgii Arkticheskogo regiona: primenenie dlya polucheniya vysokoeffektivnyh shlakoshchelochnyh vyazhushchih i betonov. Materialy IX mezhdunarodnoj nauchno-prakticheskoj konferencii. Pod obshchej red. R.V. Badylevicha, L.O. Zalkind «Sever i Arktika v novoj paradigme mirovogo razvitiya. Luzinskie chteniya», 2018. P. 129 – 130. (rus.)
6. Shekhovtsova J., Kovtun M., Kearsley E.P. Temperature rise and initial shrinkage of alkali-activated fly ash cement pastes. Advances in Cement Research. 2016. 28 (1). P. 3 – 12.
7. Rakhimova N.R., Rakhimov R.Z., Lutskin Y.S., Morozov V.P., Osin Y.N. Solidification of borate ion-exchange resins by alkali-activated slag cements. Revista Romana de Materiale. 2018. 48 (2). P. 177 – 184.
8. Murtazaev S.A.YU., Salamanova M.SH., Nahaev M.R., Sajdumov M.S., Aliev S.A., Murtazaeva T.S.A. Sposob polucheniya besklinkernogo vyazhushchego shchelochnoj aktivacii. Patent na izobretenie 2732904 C1, 24.09.2020. Zayavka № 2020109809 ot 05.03.2020. (rus.)
9. Kozhukhova N.I., Lebedev M.S., Vasilenko M.I., Goncharova E.N. Ecology-toxicology study of low-calcium solid wastes from power plants. International Journal of Pharmacy and Technology. 2016. 8 (3). P. 15349 – 15360.
10. YAvinskij A.V., CHulkova I.L. Pererabotka zoloshlakovyh othodov dlya proizvodstva dorozhnyh plit. Sbornik materialov III Nacional'noj nauchno-prakticheskoj konferencii «Obrazovanie. Transport. Innovacii. Stroitel'stvo». 2020. P. 631 – 636. (rus.)
11. Gholampour V.D., Ho T. Ozbakkaloglu Ambient-cured geopolymer mortars prepared with waste-based sands: mechanical and durability-related properties and microstructure. Compos B Eng. 2019. 160. P. 519 – 534.
12. Shi C., Jiménez A.F., Palomo A. New cements for the 21st century: the pursuit of an alternative to Portland cement. Cement and Concrete Research. 2011. 41. P. 750 – 763.
13. Zhang P., Zheng Y., Wang K., Zhang J. A review on properties of fresh and hardened geopolymer mortar. Compos B Eng. 2018. 152. P. 79 – 95.
14. Kozhukhova N., Kadyshev N., Cherevatova A., Voitovich E. Reasonability of application of slags from metallurgy industry in road construction. Advances in Intelligent Systems and Computing. 2017. 692. P. 776 – 782 https://doi.org/10.1007/978-3-319-70987-1_82
15. Kadyshev N.D., Kozhuhova N.I. Perspektivy ispol'zovaniya domennyh granulirovannyh shlakov pri proizvodstve effektivnyh bescementnyh vyazhushchih. Sovremennye stroitel'nye materialy, tekhnologii i konstrukcii: sb. materialov Mezhdunar. nauch.-prakt. konf., posvyashchennoj 95-letiyu FGBOU VPO «GGNTU im. akad. M.D. Millionshchikova». Groznyj: Izd-vo GGNTU, 2015. P. 139 – 143. (rus.)
16. Fomina E.V., Vojtovich E.V., Fomin A.E., Lebedev M.S., Kozhuhova N.I. Ocenka radiacionnogo kachestva shlaka OEMK dlya primeneniya ego v stroitel'nyh kompozitah. Vestnik Belgorodskogo gos-udarstvennogo tekhnologicheskogo universiteta im. V.G. SHuhova. 2015. 6. P. 130 – 133. (rus.)
17. Nahaev M.R., Salamanova M.SH., Ismailova Z.H. Zakonomernosti protekaniya processov formirovaniya struktury i prochnosti besklinkernogo vyazhushchego shchelochnoj aktivacii. Stroitel'nye materialy i izdeliya. 2020. 3 (1). P. 21 – 29 https://doi.org/10.34031/2618-7183-2020-3-1-21-29. (rus.)
18. Rahimova N.R., Rahimov R.Z. Vliyanie soderzhaniya dobavok termoaktivirovannoj gliny na svojstva i sostav produktov tverdeniya kompozicionnogo shlakovogo vyazhushchego s nizkim soderzhaniem shchelochnogo aktivatora. Izvestiya Kazanskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta. 2021. 2 (56). P. 50 – 59. (rus.)
19. Bellmann F., Stark J. Activation of blast furnace slag by a new method. Cement and Concrete Research. 2009. 39 (8). P. 644 – 650.
20. Tuyan M., Andiç-Çakir Ö., Ramyar K. Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Compos B Eng. 2018. 135. P. 242 – 252.
21. El-Hassan H., Najif I. Effect of process parameters on the performance of fly ash. GGBS blended ge-opolymer composites J. Sustainable. Cem. Based Mater. 2018. 7. P. 122 – 140.
22. Li N., Farzadnia N., Shi C. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation. Cement and Concrete Research 2017. 100. P. 214 – 226.
23. Provis J.L., Palomo A., Shi C. Advances in understanding alkali-activated materials. Cement and Concrete Research. 2015. 78. P. 110 – 125.
24. Lee N.K., Lee H.K. Setting and mechanical properties of alkali-activated fly ash. slag concrete manu-factured at room temperature. Construction and Building Materials. 2013. 47. P. 1201 – 1209.
25. Chang J.J. A study on the setting characteristics of sodium silicate-activated slag pastes. Cement and Concrete Research. 2003. 33. P. 1005 – 1011.
26. Haha M.B., Le Saout G., Winnefeld F., Lothenbach B. Influence of activator type on hydration kinet-ics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cement Concrete Research. 2011. 41. P. 301 – 310.
27. Fernández-Jiménez A., Puertas F. Setting of alkali-activated slag cement: influence of activator nature. Advances in Cement Research. 2001. 13. P. 115 – 121.
28. Gharzouni A., Joussein E., Samet B., Baklouti S., Pronier S., Sobrados I., Sanz J., Rossignol S. The effect of an activation solution with siliceous species on the chemical reactivity and mechanical properties of geopolymers. J. Sol-Gel Sci. Technol. 2015. 73 (1). P. 250 – 259.
29. Li J., Chen Z., Shen J., Wang B., Fan L. The enhancement effect of pre-reduction using zerovalent iron on the solidification of chromite ore processing residue by blast furnace slag and calcium hydroxide. Chemosphere. 2015. 134. P. 159 – 165.
30. Salman M., Cizer Ö., Pontikes Y., Vandewalle L., Blanpain B., Van Balen K. Effect of curing temperatures on the alkali activation of crystalline continuous casting stainless steel slag. Construction and Building Materials. 2014. 71. P. 308 – 316.
31. Wang K.T., Lemougna P.N., Tang Q., Li W., He Y., Cui X.M. Low temperature depolymerization and polycondensation of a slag-based inorganic polymer. Ceramic International. 2017. 43. P. 9067 – 9076.
32. Yip C.K., Lukey G.C., Provis J.L., van Deventer J.S. Effect of calcium silicate sources on geopoly-merisation. Cement and Concrete Research. 2008. 38. P. 554 – 564.
33. Tan Z., De Schutter G., Ye G., Gao Y., Machiels L. Influence of particle size on the early hydration of slag particle activated by Ca(OH)2 solution. Construction and Building Materials. 2014. 52. P. 488 – 493.
34. Alfimova N.I., Pirieva S.Yu., Titenko A.A. Utilization of gypsum-bearing wastes in materials of the construction industry and other areas. Construction Materials and Products. 2021. 4 (1). P. 5 – 17. doi:10.34031/2618-7183-2021-4-1-5-17
35. Alfimova N.I., Pirieva S.Yu., Elistratkin M.Yu., Nikulin I.S., Titenko A.A. Binders from gypsum-containing waste and products based on them. IOP Conference Series: Materials Science and Engineering. 2020. 945 (1). 012057. doi:10.1088/1757-899X/945/1/012057
36. Kozhukhova N.I., Chizhov R.V., Zhernovsky I.V., Strokova V.V. Structure formation of geopolymer perlite binder vs. type of alkali activating agent. ARPN Journal of Engineering and Applied Sciences. 2016. 11 (20). P. 12275 – 12281.
Kozhukhova N.I., Shurakov I.M., Titenko A.A., Alfimova N.I., Zhernovskaya I.V., Bukovtsova A.I. Effect of the curing conditions on the characteristics of citrogypsum-containing alkali-activated binders. Con-struction Materials and Products. 2021. 4 (5). P. 24 – 34. https://doi.org/10.34031/2618-7183-2021-4-5-24-34