INFLUENCE OF SiO2 CRYSTAL STRUCTURE ON THE THERMAL CYCLE OF POLYMER COMPOSITES

https://doi.org/10.34031/2618-7183-2018-1-4-21-29
Polymer composites are widely used in the space industry for the manufacture of spacecraft, satellite panels, antennas, thermostatically controlled coatings, etc. In space, they are subjected to harsh environmental con-ditions, such as ultraviolet, deep vacuum, atomic oxygen, charged particles, anthropogenic debris, micrometeoids, electromagnetic radiation and thermal cycles that cause severe degradation of the material. One of the most important environmental effects of materials based on polymers is the thermal cycle, in which the composite undergoes a large temperature difference from -170˚C to + 200˚C. The paper presents an assessment of the use of composites based on a polyalkane-rich matrix and a filler in the form of an SiO2 amorphous and crystalline structure under thermal cycling conditions. The data on the change in tensile strength, modulus of elasticity in tension and relative elongation in tension of materials after several cycles of a sharp differential temperature (from -190 to +200°C) are presented. The thermal cycle was repeated 5, 10 and 20 times. It is shown that the sample polyalkanimide has a large value of tensile strength and elastic modulus compared with highly filled composites.However, during thermal cycling there is a significant decrease in these parameters.For a highly filled composite sample with 65% crystalline SiO2 content, the decrease in tensile strength and elastic modulus after thermal cycling is insignificant and is within the measurement error. A composite with amorphous SiO2 is more susceptible to a change in mechanical properties after thermal cycling in comparison with a composite containing crystalline SiO2.
1. Nesterko E.EH., Butova M.V. Primenenie polimernyh materialov v sovremennoj stomatologii. Molodoj uchenyj. 2015. 24 (1). P. 49 – 51. (rus.)
2. Kumar A.P., Irudhayam S.J., Naviin D. A Review on Importance and Recent Applications of Polymer Composites in Orthopaedics. International Journal of Engineering Research and Development. 2012. 5. P. 40 – 43.
3. Koniuszewska A.G., Kaczmar J.W. Application of Polymer Based Composite Materials in Transportation. Progress in Rubber, Plastics and Recycling Technology. 2016. 32 (1). P. 1 – 23.
4. Parka C.K., Kana C.D., Reagan S., Deshpande B.R. Crashworthiness of composite inserts in vehicle structure. International Journal of Crashworthiness. 2017. 17 (6). P. 665 – 675.
5. Alfimova N.I., Pirieva S.YU., Fedorenko A.V., SHejchenko M.S., Vishnevskaya YA.YU. Sovremennye tendencii razvitiya radiacionno-zashchitnogo materialovedeniya. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. SHuhova. 2017. 4. P. 20 – 25. (rus.)
6. Gucma M., Bryll K. , Przetakiewicz W., Gawdzińska K., Piesowicz E. Technology of single polymer polyester composites and proposals for their recycling. Scientific Journals of the Maritime University of Szczecin. 2015. 44 (116). P. 14 – 18.
7. Gorev Y.A., Rivkind V.N. Polyester composites for shipbuilding. Russian Journal of General Chemistry. 2010. 80. P. 2098 – 2114.
8. Hooshangi Z., Feghhi S.A.H., Saeedzadeh R. The effects of low earth orbit atomic oxygen on the properties of Polytetrafluoroethylene. Acta Astronautica. 2016. 119. P. 233 – 240.
9. Tagawa M., Yokota K. Atomic oxygen-induced polymer degradation phenomena in simulated LEO space environments: How do polymers react in a complicated space environment? Acta Astronautica. 2008. 62. P. 203 – 211.
10. Singh L., Samra K.S. Opto-structural characterization of proton (3 MeV) irradiated polycarbonate and polystyrene. Radiation Physics and Chemistry. 2008. 77. P. 252 – 258.
11. Stiegman A.E., Liang R.H. Ultraviolet and Vacuum-Ultraviolet Radiation Effects on Spacecraft Thermal Control Materials. In: DeWitt R.N., Duston D., Hyder A.K. (eds) The Behavior of Systems in the Space Environment. NATO ASI Series (Series E: Applied Sciences). 245. Springer, Dordrecht, 1993.
12. CHerkashina N.I., Pavlenko Z.V., YAstrebinskaya A.V., Tolypina N.M. Degradaciya opticheskih harakteristik polialkanimida pri obluchenii ehlektronami. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. SHuhova. 2016. 11. P. 173 – 176. (rus.)
13. Lisbona E.F., Baur C., Witteveen B., Guiot M. Fast Ambient Pressure Thermal cycling of space solar array samples under equivalent AM0 illumination conditions. 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO. 2014. P. 1802 – 1804.
14. Akishin A.I., Novikov L.S. Vozdejstvie okruzhayushchej sredy na materialy kosmicheskih apparatov. M. Znanie, 1983/4. P. 64. (rus.)
15. Han J., Kim C. Low earth orbit space environment simulation and its effects on graphite/epoxy composites. Composite Structures. 2006. 72. P. 218 – 226.
16. Ahlborn K., Knaak S. Cryogenic mechanical behaviour of a thick-walled carbon fibre reinforced plastic structure. Cryogenics. 1998. 28 (4). P. 273 – 277.
17. Bechel V.T., Fredin M.B., Donaldson S.L., Kim R.Y., Camping J.D. Combined Cryogenic and Elevated Temperature Cycling of Carbon/Polymer Composites. Proceedings of 47th SAMPLE International Symposium, Long Beach, CA. 2002. P. 808 – 819.
18. Henaff-Gardin G., Lafarie M.C. Specificity of matrix cracking development in CFRP laminates under stress and thermal cycling. International Journal of Fatigue. 2002. 24(2-4). P. 171 – 177.
19. Biernacki K., Szyszkowski W., Yannacopoulos S. Effects of Thermal Cycling on Static Bearing Strength of Pin-Connected Carbon/PPS Composites. Composites Part A. 1999. 30. P. 1027 – 1034.
20. T. Yılmaz, T. Sınmazcelik Effects of thermal cycling on static bearing strength of pin-connected carbon/PPS composites. Polymer composites. 2010. 31. P. 328 – 333.
21. Lotockaya V.A., YAkovenko L.F., Aleksenko E.N. i dr. Vliyanie laboratorno imitiruemyh faktorov kosmicheskogo prostranstva na ciklicheskuyu prochnost' ugleplastikov. Voprosy atomnoj nauki i tekhniki. 2011. 4. P. 118 – 123. (rus.)
22. Ghasemi A.R., Moradi M. Effect of thermal cycling and open-hole size on mechanical properties of polymer matrix composites. Polymer Testing. 2017. 59. P. 20 – 28.
23. Vu D.Q., Gigliotti M., Lafarie-Frenot M.C. Experimental characterization of thermo-oxidation-induced shrinkage and damage in polymer-matrix composites. Composites Part A. 2012. 43 (4). P. 577 – 586.
24. S.M.R. Khalili, Najafi M., Eslami-Farsani. R. Effect of Thermal Cycling on the Tensile Behavior of Polymer Composites Reinforced by Basalt and Carbon Fibers. Mechanics of Composite Materials. 2017. 52. P. 807 – 816.
25. Shimokawa T., Katoh H., Hamaguchi Y., Sanbongi S., Mizuno H., Nakamura H., Asagumo R., Tamura H. Effect of Thermal Cycling on Microcracking and Strength Degradation of High-Temperature Polymer Composite Materials for Use in Next-Generation SST Structures. Journal of Composite Materials. 2002. 36 (7). P. 885 – 895.
26. Colin X., Verdu J. Strategy for studying thermal oxidation of organic matrix composites. Composites Science and Technology. 2005. 65 (3-4). P. 411 – 419.
27. Shishevan F.A., Akbulut H. Effects of Thermal Shock Cycling on Mechanical and Thermal Properties of Carbon/Basalt Fiber-Reinforced Intraply Hybrid Composites. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. 2018. P. 1 – 9.
28. Azghan M.A., Eslami-Farsani R. The effects of stacking sequence and thermal cycling on the flexural properties of laminate composites of aluminium-epoxy/basalt-glass fibres. Materials Research Express. 2018. 5 (2). 025302.
29. Lafarie-Frenot M.C., Rouquie S. Influence of oxidative environments on damage in c/epoxy laminates subjected to thermal cycling. Composites Science and Technology. 2004. 64 (10-11). P. 1725 – 1735.
30. CHerkashina N.I., Naumova L.N., Pavlenko A.V., Ivanickij D.A. Issledovanie vliyaniya gidrotermal'nogo sinteza na strukturu β-kvarca. Vestnik tekhnologicheskogo universiteta. 2017. 20. P. 72 – 74. (rus.)
31. Fayolle B., Richaud E., Colin X., Verdu J. Review: degradation-induced embrittlement in semi-crystalline polymers having their amorphous phase in rubbery state. Journal of Materials Science. 2008. 43. P. 6999 – 7012.
32. Grassi N., Skott Dzh. Destrukciya i stabilizaciya polimerov: per. s angl. Moskva: Mir, 1988. 246 p. (rus.)
Cherkashina N.I., Pavlenko A.V. Influence of SiO2 crystal structure on the thermal cycle of polymer composites. Construction Materials and Products. 2018. 1 (4). P. 21 – 29. https://doi.org/10.34031/2618-7183-2018-1-4-21-29