Precast and monolithic reinforced concrete structures with and without prestressing armature voltages are used as newly designed independent ones, and are the result of work to strengthen existing structures by in-creasing the cross section. In both cases, the cross-section of such elements is considered as a two-layer, and the resulting composite element operates under load in conditions distributed between the layers of internal forces, the mechanism and the actual value of the distribution of which depends on the physical and mechanical characteristics, the design scheme and the parameters of the contact interaction of the layers. When calculating and designing prestressed reinforced concrete precast and monolithic elements, the shear seam compliance is usually not taken into account, which complicates the analysis of the actual stress-strain state of the structure and contains a certain undisclosed potential for its rational design. One of the possible directions in solving the problem, taking into account the shift of the contact seam, is the use of variational principles of structural mechanics in the calculation of structures such as composite cross-section rods. In the framework of this work, the questions of practical applicability in the structural analysis of composite reinforced concrete precast-monolithic rod of variation principles of structural mechanics based on the method of V.Z. Vlasov – I.E. Mileykovsky in the form of displacements in combination with the stepwise-iterative method of calculation are considered. The results of numerical calculations by the proposed method are presented, which allows to take into account the specifics of the shear bonds of the precast and mono-lithic layer, to carry out practical accounting of the seam compliance, as well as to take into account the physical nonlinearity of the characteristics of materials, which allows the rational design of precast monolithic structures.
1. Milejkovskij I.E., Trushin S.I. Raschet tonkostennyh konstrukcij. M.: Strojizdat, 1989. 200 p. (rus.)
2. Kolchunov V.I., Panchenko L.I. Raschet sostavnyh tonkostennyh konstrukcij. M.: Izd-vo ASV, 1999. 281 p. (rus.)
3. Bajdin O.V., SHevchenko A.V., SHapovalov S.M. Eksperimental'noe issledovanie treshchinostojkosti sterzhnevyh sborno-monolitnyh konstrukcij. Vestnik BGTU im. V.G. SHuhova. 2009. 2. P. 78 – 83. (rus.)
4. Bajdin O.V., SHevchenko A.V., SHapovalov S.M. Raschet sborno-monolitnyh konstrukcij s primeneniem variacionnogo metoda i integral'nogo modulya deformacii. Stroitel'naya mekhanika i raschet sooruzhenij. 2009. 4. P. 9 – 13. (rus.)
5. Bajdin O.V., SHevchenko A.V., SHapovalov S.M. Uchet temperaturnyh deformacij pri raschete zamknutyh cilindricheskih obolochek variacionnym metodom. Stroitel'naya mekhanika i raschet sooruzhenij. 2009. 5. P. 6 – 9. (rus.)
6. Yur'ev A.G., Panchenko L.A., Seryh I.R., Rubanov V.G. Tonkostennye konstrukcii tonnelej melkogo zalozheniya. Promyshlennoe i grazhdanskoe stroitel'stvo. 2014. 8. P. 27 – 29. (rus.)
7. Nikulin A.I. K utochneniyu velichin predel'nyh otnositel'nyh deformacij betona v szhatoj zone izgibaemyh zhelezobetonnyh elementov. Promyshlennoe i grazhdanskoe stroitel'stvo. 2014. 8. P. 12 – 15. (rus.)
8. Kolchunov V.I., Skobeleva E.A., Korzhavyh A.I. K raschetu deformativnosti zhelezobetonnyh ram s elementami sostavnogo secheniya. Academia. Arhitektura i stroitel'stvo. 2009. 4. P. 74 – 78. (rus.)
9. Merkulov D.S. Prochnost' sostavnyh zhelezobetonnyh elementov pri slozhnom napryazhennom sostoyanii. Izvestiya Orlovskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: stroitel'stvo i transport. 2007. 4-16. P. 48 – 51. (rus.)
10. Kolchunov V.I., Skobeleva E.A., Gornostaev S.I. Eksperimental'nye issledovaniya deformirovaniya i treshchinostojkosti sostavnyh konstrukcij. Izvestiya Orlovskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: stroitel'stvo i transport. 2006. 1-2. P. 12 – 16. (rus.)
11. Koyankin A.A., Mitasov V.M. Stress-strain state of precast and cast-in place buildings. Magazine of Civil Engineering. 2017. 6. P. 175 – 184.
12. Rev Ribeiro R.R.J., Diogenes H.J.F., Nobrega M.V. and C. El. Debs A.L.H. A survey of the mechanical properties of concrete for structural purposes prepared on construction sites. IBRACON Estrut. Mater. [online]. 2016. 9 (5). P. 722 – 744.
13. Abdulsamee H. Study the Behavior of Reinforced Concrete Beam Using Finite Element Analysis. Proceedings of the 3rd World Congress on Civil, Structural, and Environmental Engineering (CSEE’18) Budapest, Hungary. April 8-10, 2018.
14. Sneideris A., Marciukaitis G. Strain-stress analysis of reinforced concrete beams strengthened without unloading by exterior reinforcement. Application of Codes, Design and Regulations. January 200. P. 685– 692.
15. Wellison J. Reliability analysis of reinforced concrete beams using finite element models. Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering. P.O. Faria, R.H. Lopez, L.F.F. Miguel, W.J.S. Gomes, M. Noronha (Editores), ABMEC, Florianópolis, SC, Brazil, November 5-8, 2017.
Poloz M.A., Yasser Garib Sami, Shevchenko A.V. Application of stepwise and iterative method in the calculation of bending prestressed precast and monolithic elements taking into account the physical nonline-arity. Construction Materials and Products. 2019. 2 (3). P. 12 – 27.