CHEMICAL REACTIVITY ASSESSMENT METHOD OF NANOSTRUCTURED LOW CALCIUM ALUMINOSILICATES

https://doi.org/10.34031/2618-7183-2019-2-3-5-11
Nowadays, the production of high-performance composites is a relevant objective in construction industry. Normally, geological and/or technological conditions of phase formation are responsible for chemical and structural characteristics of raw materials. In this regard, the use of a certain material dictates terms to opti-mizing production process, efficient use and, therefore, requires to develop a method for quality evaluation of raw materials. This approach allows a considerable time saving and raw materials sources, while the evaluation of final performance characteristics of designed materials is being done. The biggest interest in this area is focused on new types of developed and poorly-studied composite systems which results in a lack of capacity to design materials with known performance and, therefore, constrains the areas of application of construction composites
Among such composite systems there are zero cement alkali-aluminosilicate systems or geopolymers. For geopolymers production a wide range of different aluminosilicates with varied characteristics potentially can be used. And also, in each certain case, the quality evaluation methods for aluminosilicates should be different.
This study is focused on chemical reactivity assessment method of crystalline (mainly, nanocrystalline) low calcium aluminosilicates exposed to high-alkali media. The solubility degree in high-alkali media and compressive strength performance were evaluated in this study in order to define chemical reactivity of low calcium aluminosilicates. The compressive strength data demonstrated a positive correlation with the crystallinity degree of aluminosilicates.
1. Russian State Standart GOST 30744-2001 Cementy. Metody ispytanij s ispol'zovaniem polifrakcionnogo peska. M.: Gosstroj Rossii, GUP CPP. 2001. (rus.)
2. Russian State Standart GOST 22688-77 Izvest' stroitel'naya. Metody ispytanij. M.: IPK Izdatel'stvo standartov. 1997. (rus.)
3. Russian State Standart GOST 23789-79 (ST SEV 826-77 v chasti metodov ispytanij) Vyazhushchie gipsovye. Metody ispytanij. M.: Izdatel'stvo standartov. 1987. (rus.)
4. Shekhovtsova J., Zhernovsky I., Kovtun M., Kozhukhova N. at al. Estimation of fly ash reactivity for use in alkali-activated cements – a step towards sustainable building material and waste utilization. Journal of Cleaner Production. 2018. 178. P. 22 – 33.
5. SHekhovcova YU., ZHernovskij I.V., Kozhuhova N.I., Kovtun M. i dr. Ekspress-metod opredeleniya kompressionnyh harakteristik geopolimerov na osnove zol-unosa kislogo sostava. Vestnik BGTU im. V.G. SHuhova. 2018. 8. P. 28 – 35. (rus.)
6. ZHernovskij I.V., Kozhuhova N.I. Prognoznaya ocenka prochnosti pri szhatii geopolimernyh vyazhushchih na osnove nizkokal'cievyh zol-unosa. Razvedka i ohrana nedr. 2018. 12. P. 40 – 47. (rus.)
7. Alfimova N.I., SHapovalov N.N., SHadskij E.E., YUrakova T.G. Povyshenie effektivnosti ispol'zovaniya produktov vulkanicheskoj deyatel'nosti. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. SHuhova. 2015. 5. P. 11 – 15. (rus.)
8. Lesovik R.V., Alfimova N.I., Kovtun M.N., Lastoveckij A.N. O vozmozhnosti ispol'zovaniya tekhnogennyh peskov v kachestve syr'ya dlya proizvodstva stroitel'nyh materialov. Regional'naya arhitektura i stroitel'stvo. 2008. 2. P. 10 – 15. (rus.)
9. Gordienko I.V. ZHamojcina L.G. Muhor-Talinskoe perlit-ceolitovoe mestorozhdenie. Mestorozhdeniya Zabajkal'ya. M.: Geoinformmark, 1995. 1 (2). P. 226 – 233. (rus.)
10. Criado M., Fernandez-Jimenez A., Palomo A. Alkali activation of fly ash. Effect of the SiO2/Na2O ratio. Part I. FTIR study. Microporous Mesoporous Materials. 2007. 106. P. 180 – 191.
11. Fernández-Jiménez A., De La Torre A., Palomo A., López-Olmo G.at al. Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity. 2006. 85. Р. 625 – 634.
12. Fernandez-Jimenez A., Palomo A., Sobrados I., Sanz J. The role played by the reactive alumina con-tent in the alkaline activation of fly ashes. Microporous Mesoporous Materials. 2006. 91. P. 111 – 119.
13. Criado M., Fernandez-Jimenez A., De La Torre A., Aranda M.A.G. at al. An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cement and Concrete Research. 2007. 37. P. 671 – 679.
14. Criado M., Fernandez-Jimenez A., Palomo A. Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description. Fuel. 2010. 89. P. 3185 – 3492.
15. Gluhovskij V.D. SHlakoshchelochnye cementy, betony i konstrukcii. Doklady i tezisy dokladov 3-j Vsesoyuznoj nauchno-prakticheskoj konferencii. Kiev 1989. 1. 256 p. (rus.)
16. Barbosa V.F.F., MacKenzie K.J.D., Thaumaturgo C. Synthesis and Characterization of Materials Based on Inorganic Polymers of Alumina and Silica: Sodium Polysialate Polymers International Journal of Inorganic Materials. 2000. 2 (4). P. 309 – 317.
17. Fernández-Jiménez A., De La Torre A., Palomo A., López-Olmo G. at al.Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction. 2006. 85. Р. 1960 – 1969.
18. Cygan R.T., Liang J.-J., Kalinichev A.G. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field. J. Phys. Chem. 2004. 108 (4). P. 1255 – 1266.
19. Appen A.A. Himiya stekla. Leningrad: Himiya. 1974. 352 p. (rus.)
20. Gluhovskij V.D., Krivenko P.V., Starchuk V.N., Pashkov I.A., CHirkova V.V.. SHlakoshchelochnye betony na melkozernistyh zapolnitelyah: Monografiya. Pod red. prof. V.D. Gluhovskogo. Kiev: Vishcha shkola. Golovnoe izd-vo, 1981. 224 p. (rus.)
Kozhukhova N.I., Strokova V.V., Chizhov R.V., Kozhukhova M.I. Chemical reactivity assessment method of nanostructured low calcium aluminosilicates. Construction Materials and Products. 2019. 2 (3). P. 5 – 11. https://doi.org/10.34031/2618-7183-2019-2-3-5-11