Lesovik V.S.

Doctor of Engineering Sciences (Advanced Doctor), Professor, Belgorod State Rechnological University named after V.G. Shukhov, Russia

FOR THE STUDY OF PECULIARITIES OF STRUCTURE FORMATION OF COMPOSITE BINDERS FOR NON-AUTOCLAVED AERATED CONCRETE

https://doi.org/10.34031/2618-7183-2019-2-3-41-47
Abstract
The basis of the modern market of cellular concrete is autoclaved gas silicate. At the same time, non-autoclaved aerated concrete is largely a more technological material, allowing the variation of its properties within a wide range, having a potentially wider field of application, less costly in the organization of production, which is of great importance for small and medium-sized businesses. The main problem of non-autoclaved aerated concrete is a higher cost of raw materials compared to silicate, and 20...30% lower strength performance. The proposed solution to this problem is the development of special composite binders with a limited content of clinker and mineral additives of various genetic types, taking into account the peculiarities of the two-stage structure formation of the material – gas porization and the formation of the microstructure of the stone. The article deals with some aspects of the interaction in the system “mineral additive – gypsum – by-products of the gas release reaction” in terms of the effect on the viscosity of the swelling mass and the strength of the stone at different times of hardening. Recommendations are given on the preferred compositions of composite binders and dosages of gypsum in the molding mixture when producing a material with an average density in the range of 500...700 kg/m3.
PDF

THERMAL INSULATION SOLUTIONS OF THE REDUCED DENSITY

https://doi.org/10.34031/2618-7183-2018-1-1-40-50
Abstract
Today energy saving and energy efficiency improvement in Russia are priority directions of the country’s energy policy. First of all, when creating an energy-efficient house, it is necessary to think about preventing heat losses through enclosing structures, and only then about reducing lighting costs, optimizing the work of building engineering systems, and the introduction of alternative energy sources. Materials for thermal insulation, the most important characteristic of which is the thermal conductivity, do the main role in the provision of optimal conditions of indoor air. The creation of thermal insulation solutions with improved thermal protection properties is a very acute problem at the moment. In this connection, the purpose of this work was to create effective compositional binders that contribute to the reduction of the density of thermal insulation materials.
Within the framework of the energy-saving program and the development of housing construction of the Russian Federation and the implementation of the Federal Law №185-FZ “On assistance to the reform of housing and communal services”, the creation of new effective building materials with high performance and thermal protection characteristics that can compete with foreign analogues is of great importance.
This article presents new approaches to improve the efficiency of dry heat-insulating mixtures, taking into account the law of affinity structures, which provides for the design of composites using fillers and composite binders of reduced density. Thermal insulation solutions on the basis of dry construction mixtures have superior technology, physical and mechanical and operational performance.
PDF