Shorstov R.A.

Chief Specialist, Belgorod State Technological University named after V.G. Shukhov, Russia

FLAT BENDING SHAPE STABILITY OF RECTANGULAR CROSS-SECTION WOODEN BEAMS WHEN FASTENING THE EDGE STRETCHED FROM THE BENDING MOMENT

https://doi.org/10.58224/2618-7183-2022-5-4-5-18
Abstract
The article presents the solution to the problem of calculating the lateral buckling of wooden beams with a narrow rectangular section, taking into account intermediate point fixing in the edge stretched from the bending moment. The structure is considered as an orthotropic plate, the calculation is performed by the finite element method (FEM). To obtain a result that is valid for any beam geometry, the system of FEM equations is reduced to a dimensionless form. The dimensionless parameter that determines the value of the critical load is calculated based on the solution of the generalized eigenvalue problem. The numerical calculation algorithm is implemented in the MATLAB environment. The developed technique is verified by comparison with calculations in the LIRA and ANSYS software systems using flat and volumetric finite elements. A comparison is also made with the calculation formula presented in the Russian design standards for wooden structures SP 64.13330.2017 for the coefficient, taking into account intermediate fixing, with pure bending. It has been established that this dependence rather roughly takes into account the fastening from the bending plane of the edge stretched from the bending moment. Using the package Curve Fitting Toolbox of the MATLAB environment, we have selected refined formula for the coefficient, which can be used in engineering calculations.
PDF