Ключевые слова: concrete

Heat transfer from a cylindrical heater to a medium with variable thermophysical characteristics and heat source power

https://doi.org/10.58224/2618-7183-2024-7-6-8
Аннотация
The formulation and solution of the problem of non-stationary thermal conductivity in a composite material with variable thermophysical characteristics are considered. Density, heat capacity, thermal conductivity, as well as the power of the heat source due to the hydration reactions of the binder components change during the concrete hardening process. The heat transfer problem is formulated for the general case when there are no calculation formulas for thermophysical transfer coefficients. The “microprocess method” was used to calculate the dynamics of the temperature field. According to this method, the space from the outer surface of the heater is modeled by a system of successively located “rings”. When moving from the previous “ring” to the next one, the charge in the transfer coefficients and the power of the volumetric heat source were taken into account. At the same time, the initial and boundary conditions were corrected. The boundary value problems are formulated in the form of a differential equation of non-stationary heat transfer with an arbitrary initial distribution of transfer potentials, Dirichlet boundary conditions, and a heat source in the form Po=f(Fo).The obtained solutions are analyzed for some particular cases. Prospects for further theoretical and experimental research are determined.
PDF

Influence of corn cob ash additive on the structure and properties of cement concrete

https://doi.org/10.58224/2618-7183-2024-7-3-2
Аннотация
In accordance with the Sustainable Development Goals (SDGs) concept, there is a need to find technologies that would help make concrete production less energy intensive and more environmentally friendly. One technology involves substituting some mineral components in concrete with rapidly renewable plant-based alternatives. This study aims to establish the essential patterns among the concrete composition, micro-structure, and properties of cementitious composites modified with corn waste. Additionally, it seeks to explore the potential for producing high-quality composites using this waste material. To assess the effectiveness of this kind of waste, the strength of the cement-sand mortar, several characteristics like compressive strength, flexural durability and water absorption of hardened concrete were studied. It is established that introducing corn cob ash (CCA) to substitute a part of the cement up to 16% is justified and allows to obtain mortar and concrete with enhanced properties. CCA has a beneficial impact on the properties of Cement Sand Mortar (CSM) when replacing cement by no more than 15%. The maximum effect was achieved at 10% CCA, and the rise of compressive and flexural strength were 6.06% and 6.32%. In concrete with a CCA amount of 8%, the most impressive growth of compressive strength was 7.14%, and the lowest value of water absorption, which is 10.31% lower compared to the ordinary composition. Including CCA reduces the properties like workability, density of concrete mixtures, and the hardened composite density. The scientific results obtained prove the possibility of using CCA as an effective mineral pozzolanic additive that improves the properties of concrete.
PDF

Processing of nonlinear concrete creep curves using nonlinear optimization methods

https://doi.org/10.58224/2618-7183-2024-7-1-2
Аннотация
The article proposes a method for determining the rheological parameters of concrete based on creep curves at various stress levels using the theory of V.M. Bondarenko. Using the proposed methodology, the experimental data presented in the work of A.V. Yashin is processed. The problem of searching for rheological parameters is posed as a nonlinear optimization problem. The sum of squared deviations of the experimental values of creep strains from the theoretical ones is minimized. The interior point method is used as a nonlinear optimization method. Four different expressions for the creep measure are considered, including the creep measure by N.Kh. Harutyunyan, creep measure by A.G. Tamrazyan, a creep measure in the form of a sum of two exponentials, and McHenry’s creep measure. It has been shown that the best agreement with experimental data is provided by the McHenry’s creep measure. An expression has been selected for the nonlinearity function, which describes the nonlinear relationship between stresses and creep strains. It is shown that the instantaneous nonlinearity of deformation and the nonlinearity that manifests itself over time cannot be described by a single function.
PDF

Structure and properties of modified shungite concrete during electrode heating

https://doi.org/10.58224/2618-7183-2023-6-6-1
Аннотация
Concrete composition modifying by different electrically conductive components is one of less laborious but relatively effective methods between wide variety of electrode concrete heating effectiveness improvement methods. The purpose of this study is investigation of special aspects of cement systems modified by powdered shungite (Ssp 400 m2/kg) in combination with active mineral and plasticizing admixtures that harden under electrode heating at below zero temperatures. By the method of differential thermal analysis anomaly of exothermic reaction of cement stone specimens was discovered, that is due to formation of hydrated calcium silicate С2SH (A) discovered by the method of quantitative XRDA, and is verified by results received from scanning electron microscopy method, which among other factors provides higher strength and low permeability to these composites. Stabil-ity of cement systems modified by shungite and curing under electrode heating has been proved.
PDF