Chebakova V.Yu.

Candidate of Physical and Mathematical Sciences (Ph.D.), Kazan (Volga Region) Federal University, Department of “Technical Physics and Power Engineering”, Russia

Study of the plasma-electrolyte process for producing titanium oxide nanoparticles

https://doi.org/10.58224/2618-7183-2022-5-5-70-79
Abstract
The work is devoted to the investigation of the process of obtaining titanium oxide nanoparticles by burning high voltage DC gas discharge in an argon atmosphere when an aqueous solution is used as one of the electrodes. It was found that using an aqueous glycine solution in an inert gas medium, the plasma-electrolyte process using a streamer discharge is well suited for producing titanium oxide nanoparticles. An important regularity of particle size decrease with the increase of argon pressure in the chamber was revealed. Thus, when the pressure is increased from 1 MPa to 3 MPa, a sharp decrease in the average particle size from 62 nm to 16 nm is observed, while the changes in the aver-age particle size are not cardinal already in the process of pressure increase up to 5 MPa. A narrowing of the dispersion composition scatter with increasing pressure for 1 MPa - ± 40 nm, 3 MPa - ± 20 nm and 5 MPa - ± 8 nm was determined. The presence of titanium oxide particles was confirmed on the basis of plasmon resonance detection at 224, 230 and 235 nm.
PDF