Specifics of information model development for functional conversion of offshore oil platforms
Abstract
The paper holds that the disposal of offshore oil platforms (OOP) after the expiration of their lifecycle is inexpedient and unjustified from the environmental standpoint, since this process results in a dramatic adverse impact imposed on the hydrosphere, which explains the relevance of OOP conver-sion into objects with other functional purposes. The focus is on the global experience of converting offshore oil platforms into residential and industrial buildings. Special attention is paid to the fact that the conversion of an object leads to a reduced construction timeline, which is possible due to optimiz-ing the timeframe of dismantling works that become unnecessary during the subsequent operation of the OOP structural parts. The point is emphasized that OOP repurposing, and in particular creating so-called floating cities on their basis, is capable of meeting a handful of environmental, socioeconomic and town-planning challenges, which however calls for a rigorous professional approach and a thor-ough study of the OOP lifecycle stages both before and after their functional conversion. This, in turn, may lay the ground for the development of an information model of OOP functional repurposing. The research is aimed to explore the specifics of developing an information model of OOP conversion into other type facilities, and as such identifies the key OOP types (submersion depth and underwater de-sign solutions, principal advantages and disadvantages) required to build individual information blocks to form part of the overarching information model of OOP conversion. Also, a scheme of information environments is provided showing the algorithm of creating an information model of OOP conversion and singling out the stages of various lifecycle phases.
The conclusion is made that the functional repurposing of offshore oil platforms is required to as-sure safety of the natural environment, suggesting that the assessment of the environmental perfor-mance and energy efficiency of the organizational and technological solutions of OOP functional con-version must be made part of the front-end design engineering milestone.
The conclusion is made that the functional repurposing of offshore oil platforms is required to as-sure safety of the natural environment, suggesting that the assessment of the environmental perfor-mance and energy efficiency of the organizational and technological solutions of OOP functional con-version must be made part of the front-end design engineering milestone.