Ayubov N.A.

Candidate of Economic Sciences (Ph.D.), Professor, Kh. Ibragimov Complex Research Institute of the Russian Academy of Sciences, Russia

Influence of carbon black additives and finely ground waste from stone wool production on characteristics of cement systems

https://doi.org/10.58224/2618-7183-2025-8-4-8
Abstract
The object of research is cement composites with additives of carbon black and finely ground waste stone wool production. The work aims to design a mix of a cement composite with the additives of carbon black and finely ground waste from stone wool production, which achieves the best strength characteristics. The results show that carbon black is represented on average by particles of 155 microns with inclusions of large agglomerates up to 1-2 mm in size, consisting of almost homogeneous nanoparticles 10-20 nm in size. Carbon black is distinguished by high hydrophobic properties with a true powder density of 900 kg/m3 and a bulk density of 300 kg/m3. The chemical composition of black carbon is 70-80% carbon and 10-15% oxygen, and it also contains impurity compounds of zinc, iron, sulfur, silicon, and other elements. Carbon additives acquire hydrophilic properties in the presence of a plasticizer, and the degree of their influence on hydration becomes less pronounced. The contraction of the binder during the first three hours of hardening is reduced when carbon black is introduced into the cement system in an amount of 8%. A composition with the best strength characteristics was obtained: the content of finely ground waste from stone wool production is 6% by weight of the binder; carbon black content is 4-5%; W/C = 0.2. However, there is difficulty in mixing the mixture at such a low W/C. With a water-cement ratio of 0.3, this problem is solved, and the strength characteristics remain quite high.
PDF

Experimental studies of the processes of structure formation of composite mixtures with technogenic mechanoactivated silica component

https://doi.org/10.58224/2618-7183-2023-6-2-5-18
Abstract
The paper considers the issues of utilization of technogenic fibrous material – waste of basalt production. The chemical composition of the technogenic fibrous material was studied, it was found that it consists of 44% SiO2. The initial basalt rock, which undergoes changes during high-temperature processing in the process of obtaining basalt fiber, was studied using IR spectroscopy. The grinding of the crowns was carried out for 30 minutes, allowing to reach a specific surface area of 800 m2 / kg. Further grinding does not lead to an increase in the specific surface area, which is associated with the phenomenon of secondary aggregation of fine particles. Research on REM has shown that the “cold shots” before grinding are mostly rounded or oval in shape. The compositions were formed and the strength characteristics of the samples for the 3rd and 28th day were determined. The maximum strength gain of 59 MPa was established at the age of 28 days in samples with the addition of 5% ground “cold shots” . When introducing cold shots in an amount of 10% (composition 5) of the cement mass, an intensive strength gain is noted in the early stages of hardening (7 days) with a strength of 38 MPa, slightly higher than the strength of the control composition. The introduction of 15% ground “cold shots” gives a strength value slightly lower (32 MPa) than the values of the control composition (37 MPa) at all stages of hardening.
PDF

Development of Alkali-activated Binders based on Technogenic Fibrous Materials

https://doi.org/10.58224/2618-7183-2023-6-1-60-73
Abstract
The paper discusses the development of alkali-activated binders based on technogenic fibrous materials. An approach to the secondary use of technogenic fibrous materials as a filler of composite binders is offered. The properties of mineral wool waste have been established. The microstructure of finely ground fibrous particles has been studied. Compositions of alkali-activated binders were de-veloped, when grinding basalt insulation production waste to a specific surface of 300-330 m2 /kg, followed by the formation of a binder according to the first method with rod tamping sealing and, ac-cording to the second, by pressing a raw binder mixture at a pressure of 10 MPa. The developed com-positions of alkali–activated binder by pressing with a compressive strength of 22.8 MPa, and when compacted with subsequent rod tamping – 11.8 MPa.
PDF