Technological Solutions Ensuring Reliable Operation of Steel Vertical Reservoirs in Seismic Areas
Abstract
The article discusses the relevance of reliable operation of vertical steel reservoirs (RVS) in earthquake-prone areas. Based on the analysis of a number of scientific publications, it has been estab-lished that for the safe functioning of large–sized RVS, it is necessary to install anchor devices, the main purpose of which is the transmission of vertical forces arising from an earthquake in the wall to the base. To do this, they must be securely fixed to the wall and the base in order to evenly distribute efforts across the office of the RVS. In some cases, poor-quality connection of the anchor with the RVS leads to significant stresses in the anchors and there is a possibility of both rupture of the housing itself and rupture of the connection of the housing with the bottom of the tank. It is known that large-sized tanks require a massive base and the installation of anchors with a large number of bolts is a very expensive undertaking.
The article discusses the most common variants of anchors that are used in practice, lists some of their disadvantages and suggests an improved version based on the analysis of scientific publications. The authors present their own development – a modified version of the anchor device, the corresponding design solutions are given and the technology of the device is described. In addition, it was noted the need to increase the bearing capacity of the soils of the RVS foundation, constructed in earthquake-prone areas using geocomposite materials. It is emphasized that the required number and length of an-chor devices, as well as the choice of geocomposite material for soil hardening should be justified by appropriate calculations. It is concluded that in order to ensure reliable operational characteristics of RVS located in seismically hazardous areas, the installation of anchors, despite attracting additional financial resources, is a prerequisite, since in the event of a spill of petroleum products, the restoration of biogeocenosis requires more than one decade and involves enormous material costs.
The article discusses the most common variants of anchors that are used in practice, lists some of their disadvantages and suggests an improved version based on the analysis of scientific publications. The authors present their own development – a modified version of the anchor device, the corresponding design solutions are given and the technology of the device is described. In addition, it was noted the need to increase the bearing capacity of the soils of the RVS foundation, constructed in earthquake-prone areas using geocomposite materials. It is emphasized that the required number and length of an-chor devices, as well as the choice of geocomposite material for soil hardening should be justified by appropriate calculations. It is concluded that in order to ensure reliable operational characteristics of RVS located in seismically hazardous areas, the installation of anchors, despite attracting additional financial resources, is a prerequisite, since in the event of a spill of petroleum products, the restoration of biogeocenosis requires more than one decade and involves enormous material costs.